User manual
page 32
Analog System Lab Kit PRO
experiment 4
To understand the working of four types of second order lters, namely, Low
Pass, High Pass, Band Pass, and Band Stop lters, and study their frequency
characteristics (phase and magnitude).
Secondorderlters(or biquardlters) areimportantsince theyarethebuilding
blocks in the construction of
d
d
2
1
1
1
1
10
10
1
10
210/
10
1000.1sinsin
N
N
N
N
N
RC
H
V
V
Q
ss
H
V
V
Q
ss
H
s
V
V
Q
ss
H
s
V
V
Q
ss
s
H
Q
Q
HQ
Q
HQ
kHz
Q
kHz
Q
f kHz
f kHz
HQ
V
V
rad s
H
ttt
2
1
2
1
1
1
1
1
2
1
1
4
1
2
4
200
0
03
2
2
0
01
0
2
2
0
0
0
4
th
i
i
i
i
p
p
0
0
0
0
0
2
2
0
2
02
0
0
2
2
0
0
04
0
0
2
2
0
2
2
0
0
2
0
0
0
0
0
0
0
$
$
$
$
$$
$
$
2
~
~
~
~
~
~
~
~
~
~
~
~
~
~
z
~~
~
~
~
~
r
~r
yrr
=
=
++
=
++
=
++
+
=
=
=
=
=
=
=
=
=
=+
-
=
++
+
-
-
-
-
b
b
b
b
a
b
b
_
__
l
l
l
l
k
l
l
i
ii
orderlters,for
d
d
2
1
1
1
1
10
10
1
10
210/
10
1000.1sinsin
N
N
N
N
N
RC
H
V
V
Q
ss
H
V
V
Q
ss
H
s
V
V
Q
ss
H
s
V
V
Q
ss
s
H
Q
Q
HQ
Q
HQ
kHz
Q
kHz
Q
f kHz
f kHz
HQ
V
V
rad s
H
ttt
2
1
2
1
1
1
1
1
2
1
1
4
1
2
4
200
0
03
2
2
0
01
0
2
2
0
0
0
4
th
i
i
i
i
p
p
0
0
0
0
0
2
2
0
2
02
0
0
2
2
0
0
04
0
0
2
2
0
2
2
0
0
2
0
0
0
0
0
0
0
$
$
$
$
$$
$
$
2
~
~
~
~
~
~
~
~
~
~
~
~
~
~
z
~~
~
~
~
~
r
~r
yrr
=
=
++
=
++
=
++
+
=
=
=
=
=
=
=
=
=
=+
-
=
++
+
-
-
-
-
b
b
b
b
a
b
b
_
__
l
l
l
l
k
l
l
i
ii
. When N is odd, the
d
d
2
1
1
1
1
10
10
1
10
210/
10
1000.1sinsin
N
N
N
N
N
RC
H
V
V
Q
ss
H
V
V
Q
ss
H
s
V
V
Q
ss
H
s
V
V
Q
ss
s
H
Q
Q
HQ
Q
HQ
kHz
Q
kHz
Q
f kHz
f kHz
HQ
V
V
rad s
H
ttt
2
1
2
1
1
1
1
1
2
1
1
4
1
2
4
200
0
03
2
2
0
01
0
2
2
0
0
0
4
th
i
i
i
i
p
p
0
0
0
0
0
2
2
0
2
02
0
0
2
2
0
0
04
0
0
2
2
0
2
2
0
0
2
0
0
0
0
0
0
0
$
$
$
$
$$
$
$
2
~
~
~
~
~
~
~
~
~
~
~
~
~
~
z
~~
~
~
~
~
r
~r
yrr
=
=
++
=
++
=
++
+
=
=
=
=
=
=
=
=
=
=+
-
=
++
+
-
-
-
-
b
b
b
b
a
b
b
_
__
l
l
l
l
k
l
l
i
ii
order
ltercanberealizedusing
d
d
2
1
1
1
1
10
10
1
10
210/
10
1000.1sinsin
N
N
N
N
N
RC
H
V
V
Q
ss
H
V
V
Q
ss
H
s
V
V
Q
ss
H
s
V
V
Q
ss
s
H
Q
Q
HQ
Q
HQ
kHz
Q
kHz
Q
f kHz
f kHz
HQ
V
V
rad s
H
ttt
2
1
2
1
1
1
1
1
2
1
1
4
1
2
4
200
0
03
2
2
0
01
0
2
2
0
0
0
4
th
i
i
i
i
p
p
0
0
0
0
0
2
2
0
2
02
0
0
2
2
0
0
04
0
0
2
2
0
2
2
0
0
2
0
0
0
0
0
0
0
$
$
$
$
$$
$
$
2
~
~
~
~
~
~
~
~
~
~
~
~
~
~
z
~~
~
~
~
~
r
~r
yrr
=
=
++
=
++
=
++
+
=
=
=
=
=
=
=
=
=
=+
-
=
++
+
-
-
-
-
b
b
b
b
a
b
b
_
__
l
l
l
l
k
l
l
i
ii
secondorderltersandonerstorderlter.When
d
d
2
1
1
1
1
10
10
1
10
210/
10
1000.1sinsin
N
N
N
N
N
RC
H
V
V
Q
ss
H
V
V
Q
ss
H
s
V
V
Q
ss
H
s
V
V
Q
ss
s
H
Q
Q
HQ
Q
HQ
kHz
Q
kHz
Q
f kHz
f kHz
HQ
V
V
rad s
H
ttt
2
1
2
1
1
1
1
1
2
1
1
4
1
2
4
200
0
03
2
2
0
01
0
2
2
0
0
0
4
th
i
i
i
i
p
p
0
0
0
0
0
2
2
0
2
02
0
0
2
2
0
0
04
0
0
2
2
0
2
2
0
0
2
0
0
0
0
0
0
0
$
$
$
$
$$
$
$
2
~
~
~
~
~
~
~
~
~
~
~
~
~
~
z
~~
~
~
~
~
r
~r
yrr
=
=
++
=
++
=
++
+
=
=
=
=
=
=
=
=
=
=+
-
=
++
+
-
-
-
-
b
b
b
b
a
b
b
_
__
l
l
l
l
k
l
l
i
ii
is even, we need
d
d
2
1
1
1
1
10
10
1
10
210/
10
1000.1sinsin
N
N
N
N
N
RC
H
V
V
Q
ss
H
V
V
Q
ss
H
s
V
V
Q
ss
H
s
V
V
Q
ss
s
H
Q
Q
HQ
Q
HQ
kHz
Q
kHz
Q
f kHz
f kHz
HQ
V
V
rad s
H
ttt
2
1
2
1
1
1
1
1
2
1
1
4
1
2
4
200
0
03
2
2
0
01
0
2
2
0
0
0
4
th
i
i
i
i
p
p
0
0
0
0
0
2
2
0
2
02
0
0
2
2
0
0
04
0
0
2
2
0
2
2
0
0
2
0
0
0
0
0
0
0
$
$
$
$
$$
$
$
2
~
~
~
~
~
~
~
~
~
~
~
~
~
~
z
~~
~
~
~
~
r
~r
yrr
=
=
++
=
++
=
++
+
=
=
=
=
=
=
=
=
=
=+
-
=
++
+
-
-
-
-
b
b
b
b
a
b
b
_
__
l
l
l
l
k
l
l
i
ii
secondorderlters.Pleaselistentotherecordedlecture
at [19]foradetailedexplanationofactivelters.
Secondorderltercanbeusedtoconstructfourdierenttypesoflters.Thetransfer
functionsforthedierentltertypesareshowninTable4.1,where
d
d
2
1
1
1
1
10
10
1
10
210/
10
1000.1sinsin
N
N
N
N
N
RC
H
V
V
Q
ss
H
V
V
Q
ss
H
s
V
V
Q
ss
H
s
V
V
Q
ss
s
H
Q
Q
HQ
Q
HQ
kHz
Q
kHz
Q
f kHz
f kHz
HQ
V
V
rad s
H
ttt
2
1
2
1
1
1
1
1
2
1
1
4
1
2
4
200
0
03
2
2
0
01
0
2
2
0
0
0
4
th
i
i
i
i
p
p
0
0
0
0
0
2
2
0
2
02
0
0
2
2
0
0
04
0
0
2
2
0
2
2
0
0
2
0
0
0
0
0
0
0
$
$
$
$
$$
$
$
2
~
~
~
~
~
~
~
~
~
~
~
~
~
~
z
~~
~
~
~
~
r
~r
yrr
=
=
++
=
++
=
++
+
=
=
=
=
=
=
=
=
=
=+
-
=
++
+
-
-
-
-
b
b
b
b
a
b
b
_
__
l
l
l
l
k
l
l
i
ii
and
d
d
2
1
1
1
1
10
10
1
10
210/
10
1000.1sinsin
N
N
N
N
N
RC
H
V
V
Q
ss
H
V
V
Q
ss
H
s
V
V
Q
ss
H
s
V
V
Q
ss
s
H
Q
Q
HQ
Q
HQ
kHz
Q
kHz
Q
f kHz
f kHz
HQ
V
V
rad s
H
ttt
2
1
2
1
1
1
1
1
2
1
1
4
1
2
4
200
0
03
2
2
0
01
0
2
2
0
0
0
4
th
i
i
i
i
p
p
0
0
0
0
0
2
2
0
2
02
0
0
2
2
0
0
04
0
0
2
2
0
2
2
0
0
2
0
0
0
0
0
0
0
$
$
$
$
$$
$
$
2
~
~
~
~
~
~
~
~
~
~
~
~
~
~
z
~~
~
~
~
~
r
~r
yrr
=
=
++
=
++
=
++
+
=
=
=
=
=
=
=
=
=
=+
-
=
++
+
-
-
-
-
b
b
b
b
a
b
b
_
__
l
l
l
l
k
l
l
i
ii
isthelowfrequencygainofthetransferfunction.Thelternamesareoften
abbreviated as LPF (Low-pass Filter), HPF (High-pass Filter), BPF (Band Pass Filter),
and BSF (Band Stop Filter). In this experiment, we will describe a universal active
lter,whichprovidesallthefourlterfunctionalities.Figure4.1showsasecond
orderuniversallterrealizedusingtwointegrators.Notethattherearedierent
outputs of the circuit that realize LPF, HPF, BPF and BSF functions.
4.1 Brief theory and motivation
Goal of the experiment
C
R
C
R
R
R
Q•R
V
I
R/H0
R
BPF
LPF
BSF
HPF
R
Figure 4.1: A Second-order Universal Active Filter
Figure 4.2: Magnitude and Phase response of LPF, BPF, BSF, and HPF lters
Table 4.1: Transfer functions of Active Filters
Low Pass Filter
d
d
2
1
1
1
1
10
10
1
10
2 10 /
10
100 0.1sin sin
N
N
N
N
N
RC
H
V
V
Q
s s
H
V
V
Q
s s
H
s
V
V
Q
s s
H
s
V
V
Q
s s
s
H
Q
Q
HQ
Q
HQ
kHz
Q
kHz
Q
f kHz
f kHz
H Q
V
V
rad s
H
t t t
2
1
2
1
1
1
1
1
2
1
1
4
1
2
4
200
0
03
2
2
0
01
0
2
2
0
0
0
4
th
i
i
i
i
p
p
0
0
0
0
0
2
2
0
2
02
0
0
2
2
0
0
04
0
0
2
2
0
2
2
0
0
2
0
0
0
0
0
0
0
$
$
$
$
$ $
$
$
2
~
~
~
~
~
~
~
~
~
~
~
~
~
~
z
~ ~
~
~
~
~
r
~ r
y r r
=
=
+ +
=
+ +
=
+ +
+
=
=
=
=
=
=
=
=
=
= +
-
=
+ +
+
-
-
-
-
b
b
b
b
a
b
b
_
_ _
l
l
l
l
k
l
l
i
i i
High Pass Filter
d
d
2
1
1
1
1
10
10
1
10
2 10 /
10
100 0.1sin sin
N
N
N
N
N
RC
H
V
V
Q
s s
H
V
V
Q
s s
H
s
V
V
Q
s s
H
s
V
V
Q
s s
s
H
Q
Q
HQ
Q
HQ
kHz
Q
kHz
Q
f kHz
f kHz
H Q
V
V
rad s
H
t t t
2
1
2
1
1
1
1
1
2
1
1
4
1
2
4
200
0
03
2
2
0
01
0
2
2
0
0
0
4
th
i
i
i
i
p
p
0
0
0
0
0
2
2
0
2
02
0
0
2
2
0
0
04
0
0
2
2
0
2
2
0
0
2
0
0
0
0
0
0
0
$
$
$
$
$ $
$
$
2
~
~
~
~
~
~
~
~
~
~
~
~
~
~
z
~ ~
~
~
~
~
r
~ r
y r r
=
=
+ +
=
+ +
=
+ +
+
=
=
=
=
=
=
=
=
=
= +
-
=
+ +
+
-
-
-
-
b
b
b
b
a
b
b
_
_ _
l
l
l
l
k
l
l
i
i i
Band Pass Filter
d
d
2
1
1
1
1
10
10
1
10
2 10 /
10
100 0.1sin sin
N
N
N
N
N
RC
H
V
V
Q
s s
H
V
V
Q
s s
H
s
V
V
Q
s s
H
s
V
V
Q
s s
s
H
Q
Q
HQ
Q
HQ
kHz
Q
kHz
Q
f kHz
f kHz
H Q
V
V
rad s
H
t t t
2
1
2
1
1
1
1
1
2
1
1
4
1
2
4
200
0
03
2
2
0
01
0
2
2
0
0
0
4
th
i
i
i
i
p
p
0
0
0
0
0
2
2
0
2
02
0
0
2
2
0
0
04
0
0
2
2
0
2
2
0
0
2
0
0
0
0
0
0
0
$
$
$
$
$ $
$
$
2
~
~
~
~
~
~
~
~
~
~
~
~
~
~
z
~ ~
~
~
~
~
r
~ r
y r r
=
=
+ +
=
+ +
=
+ +
+
=
=
=
=
=
=
=
=
=
= +
-
=
+ +
+
-
-
-
-
b
b
b
b
a
b
b
_
_ _
l
l
l
l
k
l
l
i
i i
Band Stop Filter
d
d
2
1
1
1
1
10
10
1
10
2 10 /
10
100 0.1sin sin
N
N
N
N
N
RC
H
V
V
Q
s s
H
V
V
Q
s s
H
s
V
V
Q
s s
H
s
V
V
Q
s s
s
H
Q
Q
HQ
Q
HQ
kHz
Q
kHz
Q
f kHz
f kHz
H Q
V
V
rad s
H
t t t
2
1
2
1
1
1
1
1
2
1
1
4
1
2
4
200
0
03
2
2
0
01
0
2
2
0
0
0
4
th
i
i
i
i
p
p
0
0
0
0
0
2
2
0
2
02
0
0
2
2
0
0
04
0
0
2
2
0
2
2
0
0
2
0
0
0
0
0
0
0
$
$
$
$
$ $
$
$
2
~
~
~
~
~
~
~
~
~
~
~
~
~
~
z
~ ~
~
~
~
~
r
~ r
y r r
=
=
+ +
=
+ +
=
+ +
+
=
=
=
=
=
=
=
=
=
= +
-
=
+ +
+
-
-
-
-
b
b
b
b
a
b
b
_
_ _
l
l
l
l
k
l
l
i
i i