Datasheet

2011-2015 Microchip Technology Inc. DS40001615C-page 101
PIC12(L)F1501
12.0 INTERRUPT-ON-CHANGE
The PORTA pins can be configured to operate as
Interrupt-on-Change (IOC) pins. An interrupt can be
generated by detecting a signal that has either a rising
edge or a falling edge. Any individual port pin, or
combination of port pins, can be configured to generate
an interrupt. The interrupt-on-change module has the
following features:
Interrupt-on-Change enable (Master Switch)
Individual pin configuration
Rising and falling edge detection
Individual pin interrupt flags
Figure 12-1 is a block diagram of the IOC module.
12.1 Enabling the Module
To allow individual port pins to generate an interrupt, the
IOCIE bit of the INTCON register must be set. If the
IOCIE bit is disabled, the edge detection on the pin will
still occur, but an interrupt will not be generated.
12.2 Individual Pin Configuration
For each port pin, a rising edge detector and a falling
edge detector are present. To enable a pin to detect a
rising edge, the associated bit of the IOCxP register is
set. To enable a pin to detect a falling edge, the
associated bit of the IOCxN register is set.
A pin can be configured to detect rising and falling
edges simultaneously by setting both associated bits of
the IOCxP and IOCxN registers, respectively.
12.3 Interrupt Flags
The IOCAFx bits located in the IOCAF register are
status flags that correspond to the interrupt-on-change
pins of the associated port. If an expected edge is
detected on an appropriately enabled pin, then the
status flag for that pin will be set, and an interrupt will be
generated if the IOCIE bit is set. The IOCIF bit of the
INTCON register reflects the status of all IOCAFx bits.
12.4 Clearing Interrupt Flags
The individual status flags, (IOCAFx bits), can be
cleared by resetting them to zero. If another edge is
detected during this clearing operation, the associated
status flag will be set at the end of the sequence,
regardless of the value actually being written.
In order to ensure that no detected edge is lost while
clearing flags, only AND operations masking out known
changed bits should be performed. The following
sequence is an example of what should be performed.
EXAMPLE 12-1: CLEARING INTERRUPT
FLAGS
(PORTA EXAMPLE)
12.5 Operation in Sleep
The interrupt-on-change interrupt sequence will wake
the device from Sleep mode, if the IOCIE bit is set.
If an edge is detected while in Sleep mode, the IOCxF
register will be updated prior to the first instruction
executed out of Sleep.
MOVLW 0xff
XORWF IOCAF, W
ANDWF IOCAF, F