MCP6291/1R/2/3/4/5 1.0 mA, 10 MHz Rail-to-Rail Op Amp Features Description • • • • • • • • The Microchip Technology Inc. MCP6291/1R/2/3/4/5 family of operational amplifiers (op amps) provide wide bandwidth for the current. This family has a 10 MHz Gain Bandwidth Product (GBWP) and a 65° phase margin. This family also operates from a single supply voltage as low as 2.4V, while drawing 1 mA (typical) quiescent current.
MCP6291/1R/2/3/4/5 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings † VDD – VSS ........................................................................7.0V Current at Input Pins .....................................................±2 mA † Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
MCP6291/1R/2/3/4/5 AC ELECTRICAL SPECIFICATIONS Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +2.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT ≈ VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF, and CS is tied low (refer to Figure 1-2 and Figure 1-3). Parameters Sym Min Typ Max Units Conditions AC Response Gain Bandwidth Product GBWP — 10.0 — MHz Phase Margin at Unity-Gain PM — 65 — ° Slew Rate SR — 7 — V/µs G = +1 V/V Noise Input Noise Voltage Eni — 4.
MCP6291/1R/2/3/4/5 TEMPERATURE SPECIFICATIONS Electrical Characteristics: Unless otherwise indicated, VDD = +2.4V to +5.5V and VSS = GND.
MCP6291/1R/2/3/4/5 2.0 TYPICAL PERFORMANCE CURVES Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
MCP6291/1R/2/3/4/5 TYPICAL PERFORMANCE CURVES (CONTINUED) 700 650 600 550 500 450 400 350 300 250 200 150 100 10,000 VCM = VSS Representative Part Input Bias, Offset Currents (pA) Input Offset Voltage (µV) Note: Unless otherwise indicated, TA = +25°C, VDD = +2.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT ≈ VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF, and CS is tied low. VDD = 5.5V VDD = 2.4V 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VCM = VDD VDD = 5.
MCP6291/1R/2/3/4/5 TYPICAL PERFORMANCE CURVES (CONTINUED) Note: Unless otherwise indicated, TA = +25°C, VDD = +2.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT ≈ VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF, and CS is tied low. 1000 1.2 1.0 0.8 TA = +125°C TA = +85°C TA = +25°C TA = -40°C 0.6 0.4 0.2 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 100 10 VOL - VSS VDD - VOH 1 0.01 0.1 Power Supply Voltage (V) FIGURE 2-13: Quiescent Current vs. Power Supply Voltage.
MCP6291/1R/2/3/4/5 TYPICAL PERFORMANCE CURVES (CONTINUED) Note: Unless otherwise indicated, TA = +25°C, VDD = +2.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT ≈ VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF, and CS is tied low. 11 Input Noise Voltage Density (nV/ √ Hz) Input Noise Voltage Density (nV/ √ Hz) 1,000 100 10 1 0.1 1.E-01 1.E+00 1 1.E+01 1.E+02 10 100 1.E+03 1.E+04 1k 10k 1.E+05 1.E+06 100k 10 9 8 f = 10 kHz VDD = 5.0V 7 6 5 4 3 2 1 0 1M 0.0 0.
MCP6291/1R/2/3/4/5 TYPICAL PERFORMANCE CURVES (CONTINUED) Note: Unless otherwise indicated, TA = +25°C, VDD = +2.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT ≈ VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF, and CS is tied low. 5.0 5.0 G = +1V/V VDD = 5.0V 4.5 Output Voltage (V) Output Voltage (V) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.5 0.0 G = -1V/V VDD = 5.0V 4.5 0.E+00 1.E-06 2.E-06 3.E-06 4.E-06 5.E-06 6.E-06 7.E-06 8.E-06 9.E-06 0.0 1.E-05 0.E+00 1.E-06 2.
MCP6291/1R/2/3/4/5 TYPICAL PERFORMANCE CURVES (CONTINUED) Note: Unless otherwise indicated, TA = +25°C, VDD = +2.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT ≈ VDD/2, VL = VDD/2, RL = 10 kΩ to VL, CL = 60 pF, and CS is tied low. 6 +125°C +85°C +25°C -40°C -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 Input Voltage (V) FIGURE 2-31: Measured Input Current vs. Input Voltage (below VSS). DS21812E-page 10 Input, Output Voltage (V) Input Current Magnitude (A) 1.E-02 10m 1m 1.E-03 100µ 1.E-04 10µ 1.
MCP6291/1R/2/3/4/5 3.0 PIN DESCRIPTIONS Descriptions of the pins are listed in Table 3-1 (single op amps) and Table 3-2 (dual and quad op amps).
MCP6291/1R/2/3/4/5 4.0 APPLICATION INFORMATION The MCP6291/1R/2/3/4/5 family of op amps is manufactured using Microchip’s state of the art CMOS process, specifically designed for low-cost, low-power and general purpose applications. The low supply voltage, low quiescent current and wide bandwidth makes the MCP6291/1R/2/3/4/5 ideal for battery-powered applications. 4.1 VDD, and dump any currents onto VDD. When implemented as shown, resistors R1 and R2 also limit the current through D1 and D2.
MCP6291/1R/2/3/4/5 4.3 Capacitive Loads 4.4 Driving large capacitive loads can cause stability problems for voltage feedback op amps. As the load capacitance increases, the feedback loop’s phase margin decreases and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in the step response. A unity-gain buffer (G = +1) is the most sensitive to capacitive loads, though all gains show the same general behavior.
MCP6291/1R/2/3/4/5 4.6 Supply Bypass 4.8 With this family of operational amplifiers, the power supply pin (VDD for single supply) should have a local bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm for good high-frequency performance. It also needs a bulk capacitor (i.e., 1 µF or larger) within 100 mm to provide large, slow currents. This bulk capacitor can be shared with nearby analog parts. 4.
MCP6291/1R/2/3/4/5 4.9 Application Circuits 4.9.1 4.9.3 MULTIPLE FEEDBACK LOW-PASS FILTER The MCP6291/1R/2/3/4/5 op amp can be used in active-filter applications. Figure 4-8 shows an inverting, third-order, multiple feedback low-pass filter that can be used as an anti-aliasing filter. R1 R2 R4 VOUT VIN C1 R3 C4 C3 CASCADED OP AMP APPLICATIONS The MCP6295 provides the flexibility of Low-power mode for dual op amps in an 8-pin package.
MCP6291/1R/2/3/4/5 4.9.3.2 Cascaded Gain 4.9.3.4 Figure 4-11 shows a cascaded gain circuit configuration with Chip Select. Op amps A and B are configured in a non-inverting amplifier configuration.
MCP6291/1R/2/3/4/5 4.9.3.6 Second-Order MFB Low-Pass Filter with an Extra Pole-Zero Pair Figure 4-15 is a second-order multiple feedback lowpass filter with Chip Select. Use the FilterLab® software from Microchip to determine the R and C values for the op amp A’s second-order filter. Op amp B can be used to add a pole-zero pair using C3, R6 and R7.
MCP6291/1R/2/3/4/5 5.0 DESIGN AIDS Microchip provides the basic design tools needed for the MCP6291/1R/2/3/4/5 family of op amps. 5.1 SPICE Macro Model The latest SPICE macro model for the MCP6291/1R/2/ 3/4/5 op amps is available on the Microchip web site at www.microchip.com. This model is intended to be an initial design tool that works well in the op amp’s linear region of operation over the temperature range. See the model file for information on its capabilities.
MCP6291/1R/2/3/4/5 6.0 PACKAGING INFORMATION 6.
MCP6291/1R/2/3/4/5 Package Marking Information (Continued) 14-Lead PDIP (300 mil) (MCP6294) Example: XXXXXXXXXXXXXX XXXXXXXXXXXXXX YYWWNNN MCP6294-E/P 0436256 MCP6294 e3 E/P^^ 0743256 OR 14-Lead SOIC (150 mil) (MCP6294) Example: XXXXXXXXXX XXXXXXXXXX YYWWNNN MCP6294ESL 0436256 MCP6294 E/SL^^ e3 0436256 OR 14-Lead TSSOP (MCP6294) DS21812E-page 20 Example: XXXXXX YYWW 6294EST 0436 NNN 256 © 2007 Microchip Technology Inc.
MCP6291/1R/2/3/4/5 /HDG 3ODVWLF 6PDOO 2XWOLQH 7UDQVLVWRU 27 >627 @ 1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ b N E E1 3 2 1 e e1 D A2 A c φ A1 L L1 8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 0,//,0(7(56 0,1 120 0$; 1 /HDG 3LWFK H %6& 2XWVLGH /HDG 3LWFK H 2YHUDOO +HLJKW $ ± 0ROGHG 3DFNDJH 7KLFNQHVV $ ± 6WDQGRII $ ± 2YHUDOO :LGWK (
MCP6291/1R/2/3/4/5 /HDG 3ODVWLF 6PDOO 2XWOLQH 7UDQVLVWRU &+ >627 @ 1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ b 4 N E E1 PIN 1 ID BY LASER MARK 1 2 3 e e1 D A A2 c φ L A1 L1 8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 0,//,0(7(56 0,1 1 120 0$; 3LWFK H %6& 2XWVLGH /HDG 3LWFK H %6& 2YHUDOO +HLJKW $ ± 0ROGHG 3DFNDJH 7KLFNQHVV $ ± 6WDQGRII $
MCP6291/1R/2/3/4/5 /HDG 3ODVWLF 0LFUR 6PDOO 2XWOLQH 3DFNDJH 06 >0623@ 1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ D N E E1 NOTE 1 1 2 e b A2 A c φ L L1 A1 8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 0,//,0(7(56 0,1 1 120 0$; 3LWFK H 2YHUDOO +HLJKW $ ± %6& ± 0ROGHG 3DFNDJH 7KLFNQHVV $ 6WDQGRII $ ± 2YHUDOO :LGWK ( 0ROGHG 3DFNDJH :LGWK ( %
MCP6291/1R/2/3/4/5 /HDG 3ODVWLF 'XDO ,Q /LQH 3 ± PLO %RG\ >3',3@ 1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ N NOTE 1 E1 1 3 2 D E A2 A L A1 c e eB b1 b 8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV ,1&+(6 0,1 1 120 0$; 3LWFK H 7RS WR 6HDWLQJ 3ODQH $ ± ± 0ROGHG 3DFNDJH 7KLFNQHVV $ %DVH WR 6HDWLQJ 3ODQH $ ± ± 6KRXOGHU WR 6KRXOGHU :LGWK (
MCP6291/1R/2/3/4/5 /HDG 3ODVWLF 6PDOO 2XWOLQH 61 ± 1DUURZ PP %RG\ >62,&@ 1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ D e N E E1 NOTE 1 1 2 3 α h b h A2 A c φ L A1 L1 8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV β 0,//,0(7(56 0,1 1 120 0$; 3LWFK H 2YHUDOO +HLJKW $ ± %6& ± 0ROGHG 3DFNDJH 7KLFNQHVV $ ± ± 6WDQGRII $ ± 2YHUDOO :LGWK ( 0ROGHG 3DFNDJ
MCP6291/1R/2/3/4/5 /HDG 3ODVWLF 6PDOO 2XWOLQH 61 ± 1DUURZ PP %RG\ >62,&@ 1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ DS21812E-page 26 © 2007 Microchip Technology Inc.
MCP6291/1R/2/3/4/5 /HDG 3ODVWLF 'XDO ,Q /LQH 3 ± PLO %RG\ >3',3@ 1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ N NOTE 1 E1 1 3 2 D E A2 A L A1 c b1 b e eB 8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV ,1&+(6 0,1 1 120 0$; 3LWFK H 7RS WR 6HDWLQJ 3ODQH $ ± ± 0ROGHG 3DFNDJH 7KLFNQHVV $ %DVH WR 6HDWLQJ 3ODQH $ ± ± 6KRXOGHU WR 6KRXOGHU :LGWK (
MCP6291/1R/2/3/4/5 /HDG 3ODVWLF 6PDOO 2XWOLQH 6/ ± 1DUURZ PP %RG\ >62,&@ 1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ D N E E1 NOTE 1 1 2 3 e h b A A2 c φ L A1 β L1 8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV α h 0,//,0(7(56 0,1 1 120 0$; 3LWFK H 2YHUDOO +HLJKW $ ± %6& ± 0ROGHG 3DFNDJH 7KLFNQHVV $ ± ± 6WDQGRII $ ± 2YHUDOO :LGWK ( 0ROGHG 3DF
MCP6291/1R/2/3/4/5 /HDG 3ODVWLF 7KLQ 6KULQN 6PDOO 2XWOLQH 67 ± PP %RG\ >76623@ 1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ D N E E1 NOTE 1 1 2 e b A2 A c A1 φ 8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV L L1 0,//,0(7(56 0,1 1 120 0$; 3LWFK H 2YHUDOO +HLJKW $ ± %6& ± 0ROGHG 3DFNDJH 7KLFNQHVV $ 6WDQGRII $ ± 2YHUDOO :LGWK ( 0ROGHG 3DFNDJH
MCP6291/1R/2/3/4/5 NOTES: DS21812E-page 30 © 2007 Microchip Technology Inc.
MCP6291/1R/2/3/4/5 APPENDIX A: REVISION HISTORY Revision E (November 2007) The following is the list of modifications: 1. 2. 3. 4. 5. 6. 7. 8. Updated notes to Section 1.0 “Electrical Characteristics”. Increased absolute maximum voltage range of input pins. Increased maximum operating supply voltage (VDD). Added Test Circuits. Added Figure 2-31 and Figure 2-32. Added Section 4.1.1 “Phase Reversal”, Section 4.1.2 “Input Voltage and Current Limits”, and Section 4.1.3 “Normal Operation”. Added Section 4.
MCP6291/1R/2/3/4/5 NOTES: DS21812E-page 32 © 2007 Microchip Technology Inc.
MCP6291/1R/2/3/4/5 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO.
MCP6291/1R/2/3/4/5 NOTES: DS21812E-page 34 © 2007 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature.
WORLDWIDE SALES AND SERVICE AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.