ATxmega32E5/16E5/8E5 XMEGA® E5 Data Sheet Introduction The AVR® XMEGA® E5 is a family of low power, high performance, and peripheral rich 8/16-bit microcontrollers based on the AVR enhanced RISC architecture. The XMEGA E5 is a 32-pins device ranging from 8KB to 32KB Flash, with 1KB to 4KB SRAM, 512Bytes to 1KB EEPROM and up to 4KB boot section. The ATxmegaE5 devices operate at a maximum frequency of 32MHz.
ATxmega32E5/16E5/8E5 Two USARTs with full-duplex and single wire half-duplex configuration Master SPI mode Support custom protocols with configurable data frame length up to 256-bit System wake-up from deep sleep modes when used with internal 8MHz oscillator One two-wire interface with dual address match (I2C and SMBus compatible) Bridge configuration for simultaneous master and slave operation Up to 1MHz bus speed support One serial peripheral interface (SPI) 16-bit real ti
ATxmega32E5/16E5/8E5 Table Of Content 1 Ordering Information ............................................................................... 8 2 Typical Applications ................................................................................ 9 3 Pinout and Block Diagram .................................................................... 10 4 Overview ................................................................................................. 11 5 Resources ...............................
ATxmega32E5/16E5/8E5 10 Event System .......................................................................................... 24 10.1 Features .......................................................................................................... 24 10.2 Overview.......................................................................................................... 24 11 System Clock and Clock options ......................................................... 26 11.1 Features ....................
ATxmega32E5/16E5/8E5 18.2 Overview.......................................................................................................... 42 19 Hi-Res – High Resolution Extension .................................................... 44 19.1 Features .......................................................................................................... 44 19.2 Overview.......................................................................................................... 44 20 Fault Extension ..
ATxmega32E5/16E5/8E5 29.2 Overview.......................................................................................................... 59 30 AC – Analog Comparator ...................................................................... 61 30.1 Features .......................................................................................................... 61 30.2 Overview..........................................................................................................
ATxmega32E5/16E5/8E5 37.2 I/O Pin Characteristics................................................................................... 111 37.3 ADC Characteristics ...................................................................................... 118 37.4 DAC Characteristics ...................................................................................... 123 37.5 AC Characteristics......................................................................................... 124 37.6 Internal 1.
ATxmega32E5/16E5/8E5 1.
ATxmega32E5/16E5/8E5 Ordering Code ATxmega32E5-AN ATxmega32E5ANR(4) ATxmega32E5-MN ATxmega32E5-MNR(4) ATxmega32E5-M4UN ATxmega32E5-M4UNR(4) Notes: 1. 2. 3. 4. Package(1)(2)(3) Flash [Bytes] EEPROM [Bytes] SRAM [Bytes] Speed [MHz] Power supply [V] Temp. [°C] 32K + 4K 1K 4K 32 1.6 – 3.6 -40 – 105 32A (7x7mm TQFP) 32Z (5x5mm VQFN) 32MA (4x4mm UQFN) This device can also be supplied in wafer form. Please contact your local Microchip sales office for detailed ordering information.
ATxmega32E5/16E5/8E5 3.
ATxmega32E5/16E5/8E5 4. Overview The AVR XMEGA is a family of low power, high performance, and peripheral rich 8/16-bit microcontrollers based on the AVR enhanced RISC architecture. By executing instructions in a single clock cycle, the AVR XMEGA devices achieve CPU throughput approaching one million instructions per second (MIPS) per megahertz, allowing the system designer to optimize power consumption versus processing speed.
ATxmega32E5/16E5/8E5 5. Resources A comprehensive set of development tools, application notes and datasheets are available for download on www.microchip.com 5.1 Recommended Reading • XMEGA E Manual • XMEGA Application Notes This device data sheet only contains part specific information with a short description of each peripheral and module. The XMEGA E Manual describes the modules and peripherals in depth.
ATxmega32E5/16E5/8E5 7. CPU 7.1 Features 8/16-bit, high-performance AVR RISC CPU 142 instructions Hardware multiplier 32x8-bit registers directly connected to the ALU Stack in RAM Stack pointer accessible in I/O memory space Direct addressing of up to 16MB of program memory and 16MB of data memory True 16/24-bit access to 16/24-bit I/O registers Efficient support for 8-, 16-, and 32-bit arithmetic Configuration change protection of system-critical features 7.
ATxmega32E5/16E5/8E5 Figure 7-1. Block Diagram of the AVR CPU Architecture The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a register. Single-register operations can also be executed in the ALU. After an arithmetic operation, the status register is updated to reflect information about the result of the operation. The ALU is directly connected to the fast-access register file.
ATxmega32E5/16E5/8E5 section with separate lock bits for write and read/write protection. The application table section can be used for save storing of nonvolatile data in the program memory. 7.4 ALU - Arithmetic Logic Unit The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a register. Single-register operations can also be executed. The ALU operates in direct connection with all 32 general purpose registers.
ATxmega32E5/16E5/8E5 7.7 Stack and Stack Pointer The stack is used for storing return addresses after interrupts and subroutine calls. It can also be used for storing temporary data. The stack pointer (SP) register always points to the top of the stack. It is implemented as two 8-bit registers that are accessible in the I/O memory space. Data are pushed and popped from the stack using the PUSH and POP instructions. The stack grows from a higher memory location to a lower memory location.
ATxmega32E5/16E5/8E5 8. Memories 8.
ATxmega32E5/16E5/8E5 All AVR CPU instructions are 16 or 32 bits wide, and each flash location is 16 bits wide. The flash memory is organized in two main sections, the application section and the boot loader section. The sizes of the different sections are fixed, but device-dependent. These two sections have separate lock bits, and can have different levels of protection.
ATxmega32E5/16E5/8E5 corresponding peripheral registers from software. For details on calibration conditions, refer to “Electrical Characteristics” on page 78. The production signature row also contains an ID that identifies each microcontroller device type and a serial number for each manufactured device. The serial number consists of the production lot number, wafer number, and wafer coordinates for the device. The device ID for the available devices is shown in Table 8-1.
ATxmega32E5/16E5/8E5 8.5 Data Memory The data memory contains the I/O memory, internal SRAM and EEPROM. The data memory is organized as one continuous memory section, see Table 8-2 on page 21. To simplify development, I/O Memory, EEPROM and SRAM will always have the same start addresses for all XMEGA devices. Figure 8-2. Data Memory Map (hexadecimal value) Byte Address ATxmega32E5 0 FFF Byte Address I/O Registers (4K) 1000 EEPROM (1K) 13FF ATxmega16E5 0 FFF 1000 11FF RESERVED 2000 2FFF 8.
ATxmega32E5/16E5/8E5 8.10 Device ID and Revision Each device has a three-byte device ID. This ID identifies the manufacturer of the device and the device type. A separate register contains the revision number of the device. 8.11 I/O Memory Protection Some features in the device are regarded as critical for safety in some applications. Due to this, it is possible to lock the I/O register related to the clock system, the event system, and the waveform extensions.
ATxmega32E5/16E5/8E5 9. EDMA – Enhanced DMA Controller 9.
ATxmega32E5/16E5/8E5 To enable flexibility in transfers, channels can be interlinked so that the second takes over the transfer when the first is finished. The EDMA controller supports extended features such as double buffering, data match for peripherals and data search for SRAM or EEPROM. The EDMA controller supports two types of channel. Each channel type can be selected individually. 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 10. Event System 10.
ATxmega32E5/16E5/8E5 Figure 10-1. Event System Overview and Connected Peripherals CPU / Software EDMA Controller Event Routing Network ADC Event System Controller AC DAC clkPER Prescaler Real Time Counter Timer / Counters XMEGA Custom Logic IRCOM Port Pins The event routing network consists of eight software-configurable multiplexers that control how events are routed and used. These are called event channels, and allow up to eight parallel event configurations and routing.
ATxmega32E5/16E5/8E5 11. System Clock and Clock options 11.1 Features Fast start-up time Safe run-time clock switching Internal Oscillators: 32MHz run-time calibrated and tuneable oscillator 8MHz calibrated oscillator with 2MHz output option and fast start-up 32.768kHz calibrated oscillator 32kHz Ultra Low Power (ULP) oscillator with 1kHz output External clock options 0.
ATxmega32E5/16E5/8E5 Figure 11-1. The Clock System, Clock Sources, and Clock Distribution Real Time Counter Peripherals RAM Non-Volatile Memory AVR CPU clkPER clkCPU clkPER2 clkPER4 clk RTC Brown-out Detector System Clock Prescalers Watchdog Timer clkSYS System Clock Multiplexer (SCLKSEL) DIV32 DIV32 DIV32 RTCSRC PLL 11.3 XTAL2 0.4 – 16 MHz XTAL XTAL1 32.768 kHz TOSC TOSC2 32.768 kHz Int. OSC TOSC1 32 kHz Int. ULP 32 MHz Int. Osc 8 MHz Int.
ATxmega32E5/16E5/8E5 11.3.2 32.768kHz Calibrated Internal Oscillator This oscillator provides an approximate 32.768kHz clock. It is calibrated during production to provide a default frequency close to its nominal frequency. The calibration register can also be written from software for run-time calibration of the oscillator frequency. The oscillator employs a built-in prescaler, which provides both a 32.768kHz output and a 1.024kHz output. 11.3.3 32.768kHz Crystal Oscillator A 32.
ATxmega32E5/16E5/8E5 12. Power Management and Sleep Modes 12.1 Features Power management for adjusting power consumption and functions Five sleep modes Idle Power down Power save Standby Extended standby Power reduction register to disable clock and turn off unused peripherals in active and idle modes 12.2 Overview Various sleep modes and clock gating are provided in order to tailor power consumption to application requirements.
ATxmega32E5/16E5/8E5 12.3.3 Power-save Mode Power-save mode is identical to power down, with one exception. If the real-time counter (RTC) is enabled, it will keep running during sleep, and the device can also wake up from either an RTC overflow or compare match interrupt. Low power mode option of 8MHz internal oscillator enables instant oscillator wake-up time. This reduces the MCU wake-up time or enables the MCU wake-up from UART bus. 12.3.
ATxmega32E5/16E5/8E5 13. System Control and Reset 13.1 Features Reset the microcontroller and set it to initial state when a reset source goes active Multiple reset sources that cover different situations Power-on reset External reset Watchdog reset Brownout reset PDI reset Software reset Asynchronous operation No running system clock in the device is required for reset Reset status register for reading the reset source from the application code 13.
ATxmega32E5/16E5/8E5 13.4.2 Brownout Detection The on-chip brownout detection (BOD) circuit monitors the VCC level during operation by comparing it to a fixed, programmable level that is selected by the BODLEVEL fuses. If disabled, BOD is forced on at the lowest level during chip erase and when the PDI is enabled. 13.4.3 External Reset The external reset circuit is connected to the external RESET pin.
ATxmega32E5/16E5/8E5 14. WDT – Watchdog Timer 14.1 Features Issues a device reset if the timer is not reset before its timeout period Asynchronous operation from dedicated oscillator 1kHz output of the 32kHz ultra low power oscillator 11 selectable timeout periods, from 8ms to 8s Two operation modes: Normal mode Window mode Configuration lock to prevent unwanted changes 14.2 Overview The watchdog timer (WDT) is a system function for monitoring correct program operation.
ATxmega32E5/16E5/8E5 15. Interrupts and Programmable Multilevel Interrupt Controller 15.
ATxmega32E5/16E5/8E5 Program address (base address) Source Interrupt description 0x002C SPIC_INT_vect SPI on port C interrupt vector 0x002E USARTC0_INT_base USART 0 on port C interrupt base 0x0034 NVM_INT_base Non-Volatile Memory interrupt base 0x0038 XCL_INT_base XCL (programmable logic) module interrupt base 0x003C PORTA_INT_vect Port A interrupt vector 0x003E ACA_INT_base Analog comparator on Port A interrupt base 0x0044 ADCA_INT_base Analog to digital converter on Port A interrupt
ATxmega32E5/16E5/8E5 16. I/O Ports 16.
ATxmega32E5/16E5/8E5 16.3 Output Driver All port pins (Pxn) have programmable output configuration. The port pins also have configurable slew rate limitation to reduce electromagnetic emission. 16.3.1 Push-pull Figure 16-1. I/O Configuration - Totem-pole DIRxn OUTxn Pxn INxn 16.3.2 Pull-down Figure 16-2. I/O Configuration - Totem-pole with Pull-down (on input) DIRxn OUTxn Pxn INxn 16.3.3 Pull-up Figure 16-3.
ATxmega32E5/16E5/8E5 16.3.4 Bus-keeper The bus-keeper’s weak output produces the same logical level as the last output level. It acts as a pull-up if the last level was ‘1’, and pull-down if the last level was ‘0’. Figure 16-4. I/O Configuration - Totem-pole with Bus-keeper DIRxn OUTxn Pxn INxn 16.3.5 Others Figure 16-5. Output Configuration - Wired-OR with Optional Pull-down OUTxn Pxn INxn Figure 16-6.
ATxmega32E5/16E5/8E5 16.4 Input Sensing Input sensing is synchronous or asynchronous depending on the enabled clock for the ports, and the configuration is shown in Figure 16-7. Figure 16-7. Input Sensing System Overview Asynchronous sensing EDGE DETECT Interrupt Control IRQ Synchronous sensing Pxn Synchronizer INn D Q D R Q EDGE DETECT Synchronous Events R INVERTED I/O Asynchronous Events When a pin is configured with inverted I/O, the pin value is inverted before the input sensing. 16.
ATxmega32E5/16E5/8E5 17. Timer Counter Type 4 and 5 17.
ATxmega32E5/16E5/8E5 There are two differences between timer/counter type 4 and type 5. Timer/counter 4 has four CC channels, and timer/counter 5 has two CC channels. Both timer/counter 4 and 5 can be set in 8-bit mode, allowing the application to double the number of compare and capture channels that then get 8-bit resolution. Some timer/counters have extensions that enable more specialized waveform generation.
ATxmega32E5/16E5/8E5 18. WeX – Waveform Extension 18.
ATxmega32E5/16E5/8E5 The output override disable unit can disable the waveform output on selectable port pins to optimize the pins usage. This is to free the pins for other functional use, when the application does not need the waveform output spread across all the port pins as they can be selected by the OTMX configurations. The waveform extension is available for TCC4 and TCC5. The notation of this is WEXC. 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 19. Hi-Res – High Resolution Extension 19.1 Features Increases waveform generator resolution up to 8x (three bits) Supports frequency, single-slope PWM, and dual-slope PWM generation Supports the WeX when this is used for the same timer/counter 19.2 Overview The high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output from a timer/counter by four or eight.
ATxmega32E5/16E5/8E5 20. Fault Extension 20.
ATxmega32E5/16E5/8E5 21. RTC – 16-bit Real-Time Counter 21.1 Features 16-bit resolution Selectable clock source 32.768kHz external crystal External clock 32.768kHz internal oscillator 32kHz internal ULP oscillator Programmable 10-bit clock prescaling One compare register One period register Clear counter on period overflow Optional interrupt/event on overflow and compare match Correction for external crystal oscillator frequency error down to ±0.5ppm accuracy 21.
ATxmega32E5/16E5/8E5 Figure 21-1. Real-time Counter Overview External Clock TOSC1 TOSC2 32.768 kHz Crystal Osc 32.768 kHz Int. Osc DIV32 DIV32 32 kHz int ULP (DIV32) RTCSRC CALIB clkRTC PER = Correction Counter Hold Count 10-bit prescaler TOP/ Overflow CNT = ”match”/ Compare COMP The RTC also supports correction when operated using external 32.768 kHz crystal oscillator. An externally calibrated value will be used for correction.
ATxmega32E5/16E5/8E5 22. TWI – Two-Wire Interface 22.
ATxmega32E5/16E5/8E5 It is possible to disable the TWI drivers in the device, and enable a four-wire digital interface for connecting to an external TWI bus driver. This can be used for applications where the device operates from a different VCC voltage than used by the TWI bus. It is also possible to enable the bridge mode. In this mode, the slave I/O pins are selected from an alternative port, enabling independent and simultaneous master and slave operation. PORTC has one TWI.
ATxmega32E5/16E5/8E5 23. SPI – Serial Peripheral Interface 23.1 Features One SPI peripheral Full-duplex, three-wire synchronous data transfer Master or slave operation lsb first or msb first data transfer Eight programmable bit rates Interrupt flag at the end of transmission Write collision flag to indicate data collision Wake up from idle sleep mode Double speed master mode 23.
ATxmega32E5/16E5/8E5 24. USART 24.
ATxmega32E5/16E5/8E5 The clock generator includes a fractional baud rate generator that is able to generate a wide range of USART baud rates from any system clock frequencies. This removes the need to use an external crystal oscillator with a specific frequency to achieve a required baud rate. It also supports external clock input in synchronous slave operation. An IRCOM module can be enabled for one USART to support IrDA 1.4 physical compliant pulse modulation and demodulation for baud rates up to 115.
ATxmega32E5/16E5/8E5 25. IRCOM – IR Communication Module 25.1 Features Pulse modulation/demodulation for infrared communication IrDA compatible for baud rates up to 115.2Kbps Selectable pulse modulation scheme 3/16 of the baud rate period Fixed pulse period, 8-bit programmable Pulse modulation disabled Built-in filtering Can be connected to and used by any USART 25.
ATxmega32E5/16E5/8E5 26. XCL – XMEGA Custom Logic Module 26.
ATxmega32E5/16E5/8E5 (TXD/RXD) data encoding/decoding will be possible. Connecting together the LUT units, RS Latch, or any combinatorial logic between two operands or three inputs can be enabled. The LUT works in all sleep modes. Combined with event system and one I/O pin, the LUT can wake-up the system if, and only if, condition on up to three input pins is true. A block diagram of the programmable logic unit with extensions and closely related peripheral modules (in grey) is shown in Figure 26-1.
ATxmega32E5/16E5/8E5 27. CRC – Cyclic Redundancy Check Generator 27.
ATxmega32E5/16E5/8E5 28. ADC – 12-bit Analog to Digital Converter 28.1 Features 12-bit resolution Up to 300 thousand samples per second Down to 2.3μs conversion time with 8-bit resolution Down to 3.
ATxmega32E5/16E5/8E5 Figure 28-1. ADC Overview VIN S&H ADC ADC0 ADC1 • • • ADC14 ADC15 Σ 2x VOUT DAC 2 bits Stage 1 VINP 2 Internal Signals ½x - 64x CMP Stage 2 clkADC Digital Correction Logic ADC0 • • • ADC7 VINN Internal 1.00V Internal AVCC/1.6 Internal AVCC/2 AREFA AREFD < > 2 ADC Gain & Offset Error Correction Threshold (Int. Req.) RES Averaging Reference Voltage The ADC may be configured for 8- or 12-bit result, reducing the propagation delay from 3.35µs for 12-bit to 2.
ATxmega32E5/16E5/8E5 29. DAC – Digital to Analog Converter 29.
ATxmega32E5/16E5/8E5 PORTA has one DAC. Notation of this peripheral is DACA. 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 30. AC – Analog Comparator 30.
ATxmega32E5/16E5/8E5 Figure 30-1. Analog Comparator Overview Pin Input AC0OUT Pin Input Hysteresis DAC Enable Voltage Scaler ACnMUXCTRL ACnCTRL Interrupt Mode WINCTRL Enable Bandgap Interrupt Sensititivity Control & Window Function Interrupts Events Hysteresis Pin Input AC1OUT Pin Input The window function is realized by connecting the external inputs of the two analog comparators in a pair as shown in Figure 30-2. Figure 30-2.
ATxmega32E5/16E5/8E5 31. Programming and Debugging 31.
ATxmega32E5/16E5/8E5 32. Pinout and Pin Functions The device pinout is shown in “Pinout and Block Diagram” on page 10. In addition to general purpose I/O functionality, each pin can have several alternate functions. This will depend on which peripheral is enabled and connected to the actual pin. Only one of the pin functions can be used at time. 32.1 Alternate Pin Function Description The tables below show the notation for all pin functions available and describe its function. 32.1.
ATxmega32E5/16E5/8E5 XCKn Transfer Clock for USART n RXDn Receiver Data for USART n TXDn Transmitter Data for USART n SS Slave Select for SPI MOSI Master Out Slave In for SPI MISO Master In Slave Out for SPI SCK Serial Clock for SPI 32.1.6 Oscillators, Clock, and Event TOSCn Timer Oscillator pin n XTALn Input/Output for Oscillator pin n CLKOUT Peripheral Clock Output EVOUT Event Channel Output RTCOUT RTC Clock Source Output 32.1.
ATxmega32E5/16E5/8E5 32.2 Alternate Pin Functions The tables below show the primary/default function for each pin on a port in the first column, the pin number in the second column, and then all alternate pin functions in the remaining columns. The head row shows what peripheral that enable and use the alternate pin functions. For better flexibility, some alternate functions also have selectable pin locations for their functions, this is noted under the first table where this apply. Table 32-1.
ATxmega32E5/16E5/8E5 Table 32-5. PORT D – Alternate Functions ADCAPOS GAINPOS 28 ADC8 PD1 27 ADC9 XCK0 PD2 26 ADC10 RXD0 IN0 OC0 PD3 25 ADC11 TXD0 IN3 OC1 24 ADC12 OC5A PD5 23 ADC13 OC5B PD6 22 PD7 21 PD0 PD4 TCD5 USART D0 TWID Pin # PORT D (Bridge) XCL (LUT) SDA IN1/ OUT0 SCL IN2 IN2 ADC14 RXD0 IN0 ADC15 TXD0 IN3 CLOCK OUT EVENT OUT RTCOUT ACOUT REFD AREF IN1/ OUT0 XCK0 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 33. Peripheral Module Address Map The address maps show the base address for each peripheral and module in XMEGA E5. For complete register description and summary for each peripheral module, refer to the XMEGA E Manual. Table 33-1.
ATxmega32E5/16E5/8E5 Base Address Name Description 0x0800 TCC4 Timer/Counter 4 on port C 0x0840 TCC5 Timer/Counter 5 on port C 0x0880 FAULTC4 Fault Extension on TCC4 0x0890 FAULTC5 Fault Extensionon TCC5 0x08A0 WEXC Waveform Extension on port C 0x08B0 HIRESC High Resolution Extension on port C 0x08C0 USARTC0 USART 0 on port C 0x08E0 SPIC Serial Peripheral Interface on port C 0x08F8 IRCOM Infrared Communication Module 0x0940 TCD5 Timer/Counter 5 on port D 0x09C0 USARTD0 USA
ATxmega32E5/16E5/8E5 34.
ATxmega32E5/16E5/8E5 Mnemonics Operands Description RCALL k Relative Call Subroutine Operation Flags #Clocks PC PC + k + 1 None 2 / 3(1) ICALL Indirect Call to (Z) PC(15:0) PC(21:16) Z, 0 None 2 / 3(1) EICALL Extended Indirect Call to (Z) PC(15:0) PC(21:16) Z, EIND None 3(1) call Subroutine PC k None 3 / 4(1) RET Subroutine Return PC STACK None 4 / 5(1) RETI Interrupt Return PC STACK I 4 / 5(1) if (Rd = Rr) PC PC + 2 or 3 None 1/2/3 CALL
ATxmega32E5/16E5/8E5 Mnemonics Operands Description LDI Rd, K Load Immediate Rd K None 1 LDS Rd, k Load Direct from data space Rd (k) None 2(1)(2) LD Rd, X Load Indirect Rd (X) None 1(1)(2) LD Rd, X+ Load Indirect and Post-Increment Rd X (X) X+1 None 1(1)(2) LD Rd, -X Load Indirect and Pre-Decrement X X - 1, Rd (X) X-1 (X) None 2(1)(2) LD Rd, Y Load Indirect Rd (Y) (Y) None 1(1)(2) LD Rd, Y+ Load Indirect and Post-Increment Rd Y
ATxmega32E5/16E5/8E5 Mnemonics Operands SPM Description Operation Flags #Clocks Store Program Memory (RAMPZ:Z) R1:R0 None - (RAMPZ:Z) Z R1:R0, Z+2 None - Rd I/O(A) None 1 I/O(A) Rr None 1 STACK Rr None 1(1) SPM Z+ Store Program Memory and Post-Increment by 2 IN Rd, A In From I/O Location OUT A, Rr Out To I/O Location PUSH Rr Push Register on Stack POP Rd Pop Register from Stack Rd STACK None 2(1) XCH Z, Rd Exchange RAM location Temp Rd (Z
ATxmega32E5/16E5/8E5 Mnemonics Operands Description Operation Flags #Clocks SEI Global Interrupt Enable I 1 I 1 CLI Global Interrupt Disable I 0 I 1 SES Set Signed Test Flag S 1 S 1 CLS Clear Signed Test Flag S 0 S 1 SEV Set Two’s Complement Overflow V 1 V 1 CLV Clear Two’s Complement Overflow V 0 V 1 SET Set T in SREG T 1 T 1 CLT Clear T in SREG T 0 T 1 SEH Set Half Carry Flag in SREG H 1 H 1 CLH Clear Half Carry Flag i
ATxmega32E5/16E5/8E5 35. Packaging Information 35.1 32A 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 35.2 32Z 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 35.3 32MA 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 36. Electrical Characteristics All typical values are measured at T = 25°C unless other temperature condition is given. All minimum and maximum values are valid across operating temperature and voltage unless other conditions are given. 36.1 Absolute Maximum Ratings Symbol 36.2 Parameter Min. Typ. Max. Units VCC Power supply voltage -0.3 4 V IVCC Current into a VCC pin 200 IGND Current out of a Gnd pin 200 VPIN Pin voltage with respect to Gnd and VCC -0.5 VCC+0.
ATxmega32E5/16E5/8E5 Figure 36-1. Maximum Frequency vs. VCC MHz 32 Safe Operating Area 12 1.6 1.8 2018 Microchip Technology Inc. 2.7 3.
ATxmega32E5/16E5/8E5 36.3 Current Consumption Table 36-3. Current Consumption for Active Mode and Sleep Modes Symbol Parameter Condition Min. 32kHz, Ext. Clk Active power consumption (1) 1MHz, Ext. Clk 2MHz, Ext. Clk 32MHz, Ext. Clk 32kHz, Ext. Clk Idle power consumption (1) 1MHz, Ext. Clk 2MHz, Ext. Clk 32MHz, Ext. Clk All disabled, T = 85°C 20 VCC = 3.0V 35 VCC = 1.8V 155 VCC = 3.0V 290 VCC = 1.8V 300 400 VCC = 3.0V 0.6 1.2 VCC = 3.0V 7 10 VCC = 1.8V 7 VCC = 3.
ATxmega32E5/16E5/8E5 Notes: 1. All Power Reduction Registers set. Table 36-4. Current Consumption for Modules and Peripherals Symbol Parameter Condition(1) Min. Internal ULP oscillator 100 32.768kHz int. oscillator 27 8MHz int. oscillator 32MHz int. oscillator PLL Normal power mode 65 Low power mode 45 BOD Max. Units nA 275 DFLL enabled with 32.768kHz int. osc. as reference 400 20x multiplication factor, 32MHz int. osc. DIV4 as reference 230 Watchdog timer µA 0.
ATxmega32E5/16E5/8E5 36.4 Wake-up Time from Sleep Modes Table 36-5. Symbol Device Wake-up Time from Sleep Modes with Various System Clock Sources Parameter Wake-up time from idle, standby, and extended standby mode Wake-up time from power save mode twakeup Wake-up time from power down mode Notes: 1. Condition Min. Typ.(1) External 2MHz clock 0.2 32kHz internal oscillator 120 8MHz internal oscillator 0.5 32MHz internal oscillator 0.2 External 2MHz clock 4.
ATxmega32E5/16E5/8E5 36.5 I/O Pin Characteristics The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low-level input and output voltage limits reflect or exceed this specification. Table 36-6. I/O Pin Characteristics Symbol IOH (1)/ IOL (2) Parameter Condition I/O pin source/sink current Min. Typ. Max. Units -15 15 mA VIH High level input voltage, except XTAL1 and RESET pin VCC = 2.4 - 3.6V 0.7*VCC VCC+0.5 VCC = 1.6 - 2.4V 0.8*VCC VCC+0.
ATxmega32E5/16E5/8E5 Symbol Parameter Vin Input range Vin Conversion range Vin Conversion range Table 36-8. Condition Min. Parameter ClkADC ADC Clock frequency 0 VREF Differential mode, Vinp - Vinn -0.95*VREF 0.95*VREF Single ended unsigned mode, Vinp -0.05*VREF 0.95*VREF Condition Min. Maximum is 1/4 of Peripheral clock frequency 100 Measuring internal signals Sample rate Current limitation (CURRLIMIT) off fADC Table 36-9. Symbol RES Sample rate Typ. Max.
ATxmega32E5/16E5/8E5 Symbol Condition(2) Parameter Differential mode DNL(1) Differential non-linearity Single ended unsigned mode Offset Error Gain Error Differential mode Min. 1 16ksps, VREF = 1V 2 300ksps, VREF = 3V 1 300ksps, VREF = 1V 2 16ksps, VREF = 3.0V 1 1.5 16ksps, VREF = 1.0V 2 3 lsb mV Temperature drift 0.01 mV/K Operating voltage drift 0.25 mV/V External reference -5 AVCC/1.6 -5 AVCC/2.0 -6 Bandgap ±10 Differential mode mV 0.
ATxmega32E5/16E5/8E5 Symbol Parameter Condition Gain error Offset error, input referred 36.7 Min. Typ. 0.5x gain -1 1x gain -1 8x gain -1 64x gain -1.5 0.5x gain 10 1x gain 5 8x gain 5 64x gain 5 Max. Units % mV DAC Characteristics Table 36-11. Power Supply, Reference, and Output Range Symbol Parameter Condition AVCC Analog supply voltage AVREF External reference voltage Rchannel Min. Typ. RAREF Reference input resistance CAREF Reference input capacitance VCC+ 0.
ATxmega32E5/16E5/8E5 Table 36-13. Accuracy Characteristics Symbol RES Parameter Condition Min. Typ. Input Resolution VREF= Ext 1.0V INL (1) Integral non-linearity VREF=AVCC VREF=INT1V VREF=Ext 1.0V DNL (1) Differential non-linearity VREF=AVCC VREF=INT1V Gain error Max. Units 12 Bits VCC = 1.6V ±2.0 ±3 VCC = 3.6V ±1.5 ±2.5 VCC = 1.6V ±2.0 ±4 VCC = 3.6V ±1.5 ±4 VCC = 1.6V ±5.0 VCC = 3.6V ±5.0 VCC = 1.6V ±1.5 3 VCC = 3.6V ±0.6 1.5 VCC = 1.6V ±1.0 3.5 VCC = 3.6V ±0.
ATxmega32E5/16E5/8E5 Symbol Parameter tdelay Condition Propagation delay Min. Typ. Max. VCC = 3.0V, T= 85°C 22 30 VCC = 1.6V - 3.6V 21 40 0.3 0.5 64-Level Voltage Scaler Integral nonlinearity (INL) Current source accuracy after calibration 36.9 5 Units ns lsb % Current source calibration range Single mode 4 6 Current source calibration range Double mode 8 12 µA Bandgap and Internal 1.0V Reference Characteristics Table 36-15. Bandgap and Internal 1.
ATxmega32E5/16E5/8E5 36.10 External Reset Characteristics Table 36-16. External Reset Characteristics Symbol tEXT Parameter Minimum reset pulse width Reset threshold voltage (VIH) VRST Reset threshold voltage (VIL) RRST Condition Min. Typ. 90 1000 VCC = 2.7 - 3.6V 0.6*VCC VCC = 1.6 - 2.7V 0.6*VCC Max. ns VCC = 2.7 - 3.6V 0.5*VCC VCC = 1.6 - 2.7V 0.4*VCC Reset pin Pull-up Resistor Units 25 V k 36.11 Power-on Reset Characteristics Table 36-17.
ATxmega32E5/16E5/8E5 Parameter Condition Min. Write/Erase cycles EEPROM Data retention 25°C 100K 85°C 100K 105°C 30K 25°C 100 85°C 25 105°C 10 Typ. Max. Units Cycle Year Table 36-19. Programming Time Parameter Condition Chip Erase Flash EEPROM Notes: 1. 2. Min. Typ.(1) 32KB Flash, EEPROM(2) 50 16KB Flash, EEPROM(2) 45 8KB Flash, EEPROM(2) 42 Page erase 4 Page write 4 Atomic page erase and write 8 Page erase 4 Page write 4 Atomic page erase and write 8 Max.
ATxmega32E5/16E5/8E5 36.13 Clock and Oscillator Characteristics 36.13.1 Calibrated 32.768kHz Internal Oscillator Characteristics Table 36-20. 32.768kHz Internal Oscillator Characteristics Symbol Parameter Condition Min. Frequency Factory calibration accuracy Max. 32.768 T = 25°C, VCC = 3.0V User calibration accuracy 36.13.2 Typ. Units kHz -0.5 0.5 -0.5 0.5 % Calibrated 8MHz Internal Oscillator Characteristics Table 36-21.
ATxmega32E5/16E5/8E5 36.13.5 Internal Phase Locked Loop (PLL) Characteristics Table 36-24. Internal PLL Characteristics Symbol fIN Condition Input frequency Output frequency (1) fOUT Note: Parameter 1. 36.13.6 Min. Typ. Max. Output frequency must be within fOUT 0.4 64 VCC= 1.6 - 1.8V 20 48 VCC= 2.7 - 3.6V 20 128 Start-up time 25 Re-lock time 25 Units MHz µs The maximum output frequency vs. supply voltage is linear between 1.8V and 2.
ATxmega32E5/16E5/8E5 Table 36-26. External Clock with Prescaler (1) for System Clock Symbol Parameter Condition Clock Frequency (2) 1/tCK tCK Clock Period tCH Clock High Time tCL Clock Low Time tCR Rise Time (for maximum frequency) tCF Fall Time (for maximum frequency) tCK Notes: Min. Typ. VCC = 1.6 - 1.8V 0 90 VCC = 2.7 - 3.6V 0 142 VCC = 1.6 - 1.8V 11 VCC = 2.7 - 3.6V 7 VCC = 1.6 - 1.8V 4.5 VCC = 2.7 - 3.6V 2.4 VCC = 1.6 - 1.8V 4.5 VCC = 2.7 - 3.6V 2.4 36.13.
ATxmega32E5/16E5/8E5 Symbol Parameter Frequency error Condition XOSCPWR=0 Min. FRQRANGE=0 <0.1 FRQRANGE=1 <0.05 FRQRANGE=2 or 3 <0.005 XOSCPWR=1 Duty cycle XOSCPWR=0 Max. <0.005 FRQRANGE=0 40 FRQRANGE=1 42 FRQRANGE=2 or 3 45 XOSCPWR=1 XOSCPWR=0, FRQRANGE=0 Typ. Units % 48 0.
ATxmega32E5/16E5/8E5 Symbol Parameter CXTAL1 Parasitic capacitance XTAL1 pin 5.4 CXTAL2 Parasitic capacitance XTAL2 pin 7.1 CLOAD Parasitic capacitance load 3.07 Note: 1. 36.13.8 Condition Min. Typ. Max. Units pF Numbers for negative impedance are not tested in production but guaranteed from design and characterization. External 32.768kHz Crystal Oscillator and TOSC Characteristics Table 36-28. External 32.
ATxmega32E5/16E5/8E5 36.14 SPI Characteristics Figure 36-5. SPI Timing Requirements in Master Mode SS tSCKR tMOS tSCKF SCK (CPOL = 0) tSCKW SCK (CPOL = 1) tSCKW tMIS MISO (Data Input) tMIH tSCK MSB LSB tMOH tMOH MOSI (Data Output) MSB LSB Figure 36-6. SPI Timing Requirements in Slave Mode SS tSSS tSCKR tSCKF tSSH SCK (CPOL = 0) tSSCKW SCK (CPOL = 1) tSSCKW tSIS MOSI (Data Input) tSIH MSB tSOSSS MISO (Data Output) tSSCK LSB tSOS MSB 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 Table 36-29. SPI Timing Characteristics and Requirements Symbol Parameter tSCK SCK period Master tSCKW SCK high/low width Master 0.5×SCK tSCKR SCK rise time Master 2.7 tSCKF SCK fall time Master 2.7 tMIS MISO setup to SCK Master 10 tMIH MISO hold after SCK Master 10 tMOS MOSI setup SCK Master 0.5×SCK tMOH MOSI hold after SCK Master 1.
ATxmega32E5/16E5/8E5 36.15 Two-Wire Interface Characteristics Table 36-6 on page 83 describes the requirements for devices connected to the two-wire interface (TWI) Bus. The AVR XMEGA TWI meets or exceeds these requirements under the noted conditions. Timing symbols refer to Figure 36-7. Figure 36-7. Two-wire Interface Bus Timing tof tHIGH tLOW tr SCL tSU;STA tHD;DAT tSU;STO tSU;DAT tHD;STA SDA tBUF Table 36-30. Two-wire Interface Characteristics Symbol Parameter Condition Min. Typ. Max.
ATxmega32E5/16E5/8E5 Symbol tLOW Low period of SCL Clock tHIGH High period of SCL Clock tSU;STA tHD;DAT tSU;DAT tSU;STO Set-up time for a repeated START condition Data hold time Data setup time Setup time for STOP condition Bus free time between a STOP and START condition tBUF Notes: Parameter 1. 2. 3. Condition Min. fSCL ≤ 100kHz 4.7 fSCL ≤ 400kHz 1.3 fSCL ≤ 1MHz 0.5 fSCL ≤ 100kHz 4 fSCL ≤ 400kHz 0.6 fSCL ≤ 1MHz 0.26 fSCL ≤ 100kHz 4.7 fSCL ≤ 400kHz 0.6 fSCL ≤ 1MHz 0.
ATxmega32E5/16E5/8E5 37. Typical Characteristics 37.1 Current Consumption 37.1.1 Active Mode Supply Current Figure 37-1. Active Mode Supply Current vs. Frequency fSYS = 0 – 1MHz external clock, T = 25°C V_CC_ 0.35 1.6 1.8 ICC [mA] 0.30 2.2 0.25 2.7 0.20 3 3.6 0.15 0.10 0.05 0.00 0.0 0.2 0.4 0.6 0.8 1.0 Frequency [MHz] Figure 37-2. Active Mode Supply Current vs. Frequency fSYS = 0 – 32MHz external clock, T = 25°C V_CC_ 9 1.8 8 2.2 7 2.7 6 ICC [mA] 1.6 3 5 3.
ATxmega32E5/16E5/8E5 Figure 37-3. Active Mode Supply Current vs. VCC fSYS = 32.768kHz internal oscillator Temperature 38.0 -40 37.0 25 36.0 85 35.0 105 ICC [uA] 34.0 33.0 32.0 31.0 30.0 29.0 28.0 27.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] Figure 37-4. Active Mode Supply Current vs. VCC fSYS = 1MHz external clock Temperature 0.35 -40 25 85 0.30 ICC [mA] 105 0.25 0.20 0.15 0.10 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.
ATxmega32E5/16E5/8E5 Figure 37-5. Active Mode Supply Current vs. VCC fSYS = 8MHz internal oscillator prescaled to 2MHz Temperature 0.8 -40 25 0.7 85 105 ICC [mA] 0.6 0.5 0.4 0.3 0.2 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] Figure 37-6. Active Mode Supply Current vs. VCC fSYS = 8MHz internal oscillator Temperature 2.5 -40 25 85 ICC [mA] 2.0 105 1.5 1.0 0.5 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 Figure 37-7. Active mode Supply Current vs. VCC fSYS = 32MHz internal oscillator prescaled to 8MHz Temperature 3.0 -40 25 85 2.5 ICC [mA] 105 2.0 1.5 1.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] Figure 37-8. Active Mode Supply Current vs. VCC fSYS = 32MHz internal oscillator Temperature 8.0 -40 25 7.5 85 ICC [mA] 7.0 105 6.5 6.0 5.5 5.0 4.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Vcc [V] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 37.1.2 Idle Mode Supply Current Figure 37-9. Idle Mode Supply Current vs. Frequency fSYS = 0 - 1MHz external clock, T = 25C V_CC_ 150 1.600 1.800 125 2.200 2.700 ICC [uA] 100 3.000 75 3.600 50 25 0 0.0 0.2 0.4 0.6 0.8 1.0 Frequency [MHz] Figure 37-10. Idle Mode Supply Current vs. Frequency fSYS = 1 - 32MHz external clock, T = 25C V_CC_ 4.0 1.6 1.8 3.5 2.2 3.0 2.7 ICC [mA] 2.5 3 2.0 3.6 1.5 1.0 0.5 0.
ATxmega32E5/16E5/8E5 Figure 37-11. Idle Mode Supply Current vs. VCC fSYS = 32.768kHz internal oscillator Temperature 32 -40 25 31 85 ICC [uA] 30 105 29 28 27 26 25 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] Figure 37-12. Idle Mode Supply Current vs. VCC fSYS = 1MHz external clock Temperature 55.5 -40 25 54.0 85 ICC [uA] 52.5 105 51.0 49.5 48.0 46.5 45.0 1.6 1.8 1.700 2.2 2.4 2.6 2.8 1.800 3.2 3.4 3.6 Vcc [V] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 Figure 37-13. Idle Mode Supply Current vs. VCC fSYS = 8MHz internal oscillator prescaled to 2MHz Temperature 1.0 -40 25 0.9 85 0.8 105 ICC [mA] 0.7 0.6 0.5 0.4 0.3 0.2 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] Figure 37-14. Idle Mode Supply Current vs. VCC fSYS = 8MHz internal oscillator Temperature 1.1 -40 25 1.0 85 0.9 105 ICC [mA] 0.8 0.7 0.6 0.5 0.4 0.3 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.
ATxmega32E5/16E5/8E5 Figure 37-15. Idle Mode Supply Current vs. VCC fSYS = 32MHz internal oscillator prescaled to 8MHz Temperature 1.8 -40 25 1.6 85 105 ICC [mA] 1.4 1.2 1.0 0.8 0.6 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] Figure 37-16. Idle Mode Supply Current vs. VCC fSYS = 32MHz internal oscillator Temperature 4.5 -40 25 85 ICC [mA] 4.0 105 3.5 3.0 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Vcc [V] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 37.1.3 Power-down Mode Supply Current Figure 37-17. Power-down Mode Supply Current vs. Temperature All functions disabled V_CC_ ICC [uA] 3.00 1.6 2.70 1.8 2.40 2.2 2.10 2.7 1.80 3 1.50 3.6 1.20 0.90 0.60 0.30 0.00 -30 -15 0 15 30 45 60 75 90 105 Temperature [°C] Figure 37-18. Power-down Mode supply Current vs. VCC All functions disabled Temperature ICC [uA] 3.00 -40 2.70 25 2.40 85 2.10 105 1.80 1.50 1.20 0.90 0.60 0.30 0.00 1.6 1.8 2.0 2.2 2.
ATxmega32E5/16E5/8E5 Figure 37-19. Power-down Mode Supply Current vs. Temperature Sampled BOD with Watchdog Timer running on ULP oscillator 0.760 0.755 Idd [µA] 0.750 0.745 0.740 0.735 0.730 0.725 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] 37.1.4 Power-save Mode Supply Current Figure 37-20. Power-save Mode Supply Current vs. VCC Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC 1.100 1.050 Idd [µA] 1.000 0.950 0.900 0.850 0.800 1.6 1.8 2.0 2.2 2.
ATxmega32E5/16E5/8E5 37.1.5 Standby Mode Supply Current Figure 37-21. Standby Supply Current vs. VCC Standby, fSYS = 1MHz Temperature 10 25 9 85 8 105 7 ICC [uA] -40 6 5 4 3 2 1 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] Figure 37-22. Standby Supply Current vs. VCC 25°C, running from different crystal oscillators 500 Crystals Idd [µA] 450 16.0MHz 400 12.0MHz 350 8.0MHz 300 2.0MHz 250 0.455MHz 200 150 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.
ATxmega32E5/16E5/8E5 37.2 37.2.1 I/O Pin Characteristics Pull-up Figure 37-23. I/O pin pull-up Resistor Current vs. Input Voltage VCC = 1.8V Temperature 10 -40 25 0 85 IPIN [uA] -10 105 -20 -30 -40 -50 -60 -70 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 VPIN [V] Figure 37-24. I/O Pin Pull-up Resistor Current vs. Input Voltage VCC = 3.0V Temperature 20 -40 25 0 85 IPIN [uA] -20 105 -40 -60 -80 -100 -120 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.
ATxmega32E5/16E5/8E5 Figure 37-25. I/O Pin Pull-up Resistor Current vs. Input Voltage VCC = 3.3V Temperature -40 25 0 85 IPIN [uA] 105 -50 -100 -150 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 VPIN [V] 37.2.2 Output Voltage vs. Sink/Source Current Figure 37-26. I/O Pin Output Voltage vs. Source Current VCC = 1.8V Temperature 1.80 25 85 105 1.75 VPIN [V] -40 1.70 1.65 1.60 1.55 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.
ATxmega32E5/16E5/8E5 Figure 37-27. I/O Pin Output Voltage vs. Source Current VCC = 3.0V Temperature 3.0 25 85 2.9 105 VPIN [V] 2.8 -40 2.7 2.6 2.5 2.4 2.3 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 IPIN [mA] Figure 37-28. I/O Pin Output Voltage vs. Source Current VCC = 3.3V Temperature 3.3 25 85 3.2 105 VPIN [V] 3.1 -40 3.0 2.9 2.8 2.7 2.6 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 IPIN [mA] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 Figure 37-29. I/O Pin Output Voltage vs. Source Current , V_CC_ 4.0 1.6 1.8 VPIN [V] 3.5 2.7 3.0 3 2.5 3.3 3.6 2.0 1.5 1.0 0.5 -18 -15 -12 -9 -6 -3 0 IPIN [mA] Figure 37-30. I/O Pin Output Voltage vs. Sink Current VCC = 1.8V Temperature 0.30 25 85 0.25 105 -40 VPIN [V] 0.20 0.15 0.10 0.05 0.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 IPIN [mA] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 Figure 37-31. I/O Pin Output Voltage vs. Sink Current VCC = 3.0V Temperature 0.7 25 85 0.6 105 VPIN [V] 0.5 -40 0.4 0.3 0.2 0.1 0.0 0 2 4 6 8 10 12 14 16 18 20 IPIN [mA] Figure 37-32. I/O Pin Output Voltage vs. Sink Current VCC = 3.3V Temperature 0.7 25 85 0.6 105 VPIN [V] 0.5 -40 0.4 0.3 0.2 0.1 0.0 0 2 4 6 8 10 12 14 16 18 20 IPIN [mA] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 Figure 37-33. I/O Pin Output Voltage vs. Sink Current V_CC_ 1.60 1.6 1.8 1.40 2.7 1.20 3 VPIN [V] 1.00 3.3 0.80 3.6 0.60 0.40 0.20 0.00 0 2 4 6 8 10 12 14 16 18 20 IPIN [mA] 37.2.3 Thresholds and Hysteresis Figure 37-34. I/O Pin Input Threshold Voltage vs. VCC T = 25°C Test Info 1.65 VIH VIL VTHRESHOLD [V] 1.50 1.35 1.20 1.05 0.90 0.75 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 Figure 37-35. I/O Pin Input Threshold Voltage vs. VCC VIH I/O pin read as “1” Temperature 1.80 -40 25 VTHRESHOLD [V] 1.60 85 105 1.40 1.20 1.00 0.80 0.60 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] Figure 37-36. I/O Pin Input Threshold Voltage vs. VCC VIL I/O pin read as “0” Temperature 1.80 -40 25 VTHRESHOLD [V] 1.60 85 105 1.40 1.20 1.00 0.80 0.60 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 Figure 37-37. I/O Pin Input Hysteresis vs. VCC Temperature 0.09 -40 25 0.08 85 VHYSTERESIS [V] 0.07 105 0.06 0.05 0.04 0.03 0.02 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] 37.3 ADC Characteristics Figure 37-38. ADC INL vs. VREF T = 25C, VCC = 3.6V, external reference Mode 1.75 Single-ended unsigned mode Single-ended signed mode 1.50 Differential mode INL [LSB] 1.25 1.00 0.75 0.50 0.25 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.
ATxmega32E5/16E5/8E5 Figure 37-39. ADC INL Error vs. VCC T = 25C, VREF = 1.0V Mode 1.80 Single-ended unsigned mode Single-ended signed mode 1.60 Differential mode INL [LSB] 1.40 1.20 1.00 0.80 0.60 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 2.6 2.8 3.0 Vcc [V] Figure 37-40. ADC DNL Error vs. VREF SE Unsigned mode, T=25C, VCC = 3.6V, external reference 0.75 0.70 DNL [LSB] 0.65 0.60 0.55 0.50 0.45 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 Vref [V] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 Figure 37-41. ADC Gain Error vs. VCC T = 25C, VREF = 1.0V, ADC sample rate = 300ksps Mode 0.0 Single-ended signed mode Differential mode Gain error [mV] -1.0 Single-ended unsigned mode -2.0 -3.0 -4.0 -5.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] Figure 37-42. ADC Gain Error vs. VREF T = 25C, VCC = 3.6V, ADC sample rate = 300ksps Mode 0.0 Single-ended signed mode Differential mode -2.0 Single-ended unsigned mode Gain error [mV] -4.0 -6.0 -8.
ATxmega32E5/16E5/8E5 Figure 37-43. ADC Gain Error vs. Temperature VCC = 3.6V, VREF = 1.0V, ADC sample rate = 300ksps Mode 0.0 Single-ended signed mode Differential mode -1.0 Single-ended unsigned mode Gain error [mV] -2.0 -3.0 -4.0 -5.0 -6.0 -7.0 -40 -20 0 20 40 60 80 100 Temperature [°C] Figure 37-44. ADC Offset Error vs. VCC T = 25C, VREF = 1.0V, ADC sample rate = 300ksps Mode 25.0 Single-ended unsigned mode Single-ended signed mode Differential mode Offset [mV] 20.0 15.0 10.0 5.
ATxmega32E5/16E5/8E5 Figure 37-45. ADC Offset Error vs. VREF T = 25C, VCC = 3.6V, ADC sample rate = 300ksps Mode 30.0 Single-ended unsigned mode Single-ended signed mode Differential mode Offset [mV] 25.0 20.0 15.0 10.0 5.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 Vref [V] Figure 37-46. ADC Gain Error vs. Temperature VCC = 3.6V, VREF = external 1.0V, sample rate = 300ksps Mode 0.0 Single-ended signed mode Differential mode -1.0 Single-ended unsigned mode Gain error [mV] -2.
ATxmega32E5/16E5/8E5 37.4 DAC Characteristics Figure 37-47. DAC INL Error vs. External VREF T = 25C, VCC = 3.6V 2.2 2.1 2 INL [LSB] 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 Vref [V] Figure 37-48. DNL Error vs. VREF T = 25C, VCC = 3.6V Mode 0.75 Single-ended unsigned mode Single-ended signed mode 0.70 Differential mode DNL [LSB] 0.65 0.60 0.55 0.50 0.45 0.40 0.35 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.
ATxmega32E5/16E5/8E5 Figure 37-49. DNL Error vs. VCC T = 25C, VREF = 1.0V Mode 0.80 Single-ended unsigned mode Single-ended signed mode Differential mode DNL [LSB] 0.70 0.60 0.50 0.40 0.30 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] 37.5 AC Characteristics Figure 37-50. Analog Comparator Hysteresis vs. VCC Small hysteresis 16 Temperature (°C) Vhyst [mV] 14 85 25 12 -40 10 8 6 4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.
ATxmega32E5/16E5/8E5 Figure 37-51. Analog Comparator Hysteresis vs. VCC Vhyst [mV] Large hysteresis 34 32 30 28 26 24 22 20 18 16 14 Temperature (°C) 85 25 -40 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] Figure 37-52. Analog Comparator Propagation Delay vs. VCC 26 Temperature (°C) tPD [ns] 24 85 22 25 20 -40 18 16 14 12 10 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 Vcc [V] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 Figure 37-53. Analog Comparator Propagation Delay vs. Temperature 26 Vcc (V) tPD [ns] 24 1.6 22 2 20 2.7 18 3 16 14 3.3 12 3.6 10 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Temperature [°C] Figure 37-54. Analog Comparator Current Consumption vs. VCC Temperature 240 25 230 Module current consumption [uA] -40 85 220 105 210 200 190 180 170 160 150 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 Figure 37-55. Analog Comparator Voltage Scaler vs. SCALEFAC T = 25C, VCC = 3.0V 0.050 0.025 INL [LSB] 0 -0.025 -0.050 -0.075 -0.100 25°C -0.125 -0.150 0 10 20 30 40 50 60 70 SCALEFAC Figure 37-56. Analog Comparator Offset Voltage vs. Common Mode Voltage 35 Temperature (°C) Voffset [mV] 30 -40 25 25 20 85 15 10 5 0 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 Vcm [V] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 Figure 37-57. Analog Comparator Source vs. Calibration Value VCC = 3.0V 7.0 Temperature (°C) I [uA] 6.5 -40 6.0 25 5.5 85 5.0 4.5 4.0 3.5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CALIB [3..0] Figure 37-58. Analog Comparator Source vs. Calibration Value T = 25C 8.0 Vcc [V] 7.0 3 6.0 I [uA] 3.6 2.2 5.0 1.8 4.0 3.0 2.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CALIB [3..0] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 37.6 Internal 1.0V Reference Characteristics Figure 37-59. ADC/DAC Internal 1.0V Reference vs. Temperature Vcc 1.015 1.6 1.8 Bandgap Voltage [V] 1.010 2.2 1.005 2.7 1.000 3 3.3 0.995 3.6 0.990 0.985 0.980 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 Temperature [°C] 37.7 BOD Characteristics Figure 37-60. BOD Thresholds vs. Temperature BOD level = 1.6V Test Info 1.70 fall rise 1.69 1.68 VBOT [V] 1.67 1.66 1.65 1.64 1.63 1.62 1.
ATxmega32E5/16E5/8E5 Figure 37-61. BOD Thresholds vs. Temperature BOD level = 3.0V Test Info fall rise VBOT [V] 3.10 3.05 3.00 2.95 -30 -15 0 15 30 45 60 75 90 105 Temperature [°C] 37.8 External Reset Characteristics Figure 37-62. Minimum Reset Pin Pulse Width vs. VCC T [°C] 140 -40 25 130 85 105 t_RST_ [ns] 120 110 100 90 80 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 Figure 37-63. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage VCC = 1.8V Temperature 10 25 0 85 -10 105 -20 IRESET [uA] -40 -30 -40 -50 -60 -70 -80 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 VRESET [V] Figure 37-64. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage VCC = 3.0V Temperature 25 -40 25 0 85 105 IRESET [uA] -25 -50 -75 -100 -125 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 VRESET [V] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 Figure 37-65. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage VCC = 3.3V Temperature 0 -40 25 -25 85 105 IRESET [uA] -50 -75 -100 -125 -150 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 VRESET [V] Figure 37-66. Reset Pin Input Threshold Voltage vs. VCC VIH - Reset pin read as “1” , T [°C] V_threshold_ [V] 2.1 -40 2.0 25 1.9 85 1.8 105 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.
ATxmega32E5/16E5/8E5 Figure 37-67. Reset Pin Input Threshold Voltage vs. VCC VIL - Reset pin read as “0” T [°C] 1.7 1.6 25 1.5 85 1.4 V_threshold_ [V] -40 105 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] 37.9 Power-on Reset Characteristics Figure 37-68. Power-on Reset Current Consumption vs. VCC BOD level = 3.0V, enabled in continuous mode T [°C] 700 -40 25 600 85 ICC [uA] 500 105 400 300 200 100 0 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.
ATxmega32E5/16E5/8E5 Figure 37-69. Power-on Reset Current Consumption vs. VCC BOD level = 3.0V, enabled in sampled mode T [°C] ICC [uA] 650 -40 585 25 520 85 455 105 390 325 260 195 130 65 0 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 V_CC_ [V] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 37.10 Oscillator Characteristics 37.10.1 Ultra Low-Power Internal Oscillator Figure 37-70. Ultra Low-Power Internal Oscillator Frequency vs. Temperature V_CC_ 37 1.6 1.8 36 2.2 35 2.7 Frequency [kHz] 34 3 33 3.6 32 31 30 29 28 -45 -30 -15 0 15 30 45 60 75 90 105 Temperature [°C] 37.10.2 32.768KHz Internal Oscillator Figure 37-71. 32.768kHz Internal Oscillator Frequency vs. Temperature V_CC_ 1.6 1.8 33.00 Frequency [kHz] 2.2 2.7 32.90 3 32.80 3.6 32.
ATxmega32E5/16E5/8E5 Figure 37-72. 32.768kHz Internal Oscillator Frequency vs. Calibration Value VCC = 3.0V Temperature 50.00 -40 25 Frequency [kHz] 45.00 85 105 40.00 35.00 30.00 25.00 20.00 0 24 48 72 96 120 144 168 192 216 240 264 CAL Figure 37-73. 32.768kHz Internal Oscillator Calibration Step Size VCC = 3.0V, T = 25°C to 105°C Temperature 1.00 -40 25 Frequency Step Size [%] 0.00 85 105 -1.00 -2.00 -3.00 -4.00 -5.
ATxmega32E5/16E5/8E5 37.10.3 8MHz Internal Oscillator Figure 37-74. 8MHz Internal Oscillator Frequency vs. Temperature Normal mode V_CC_[V] Frequency [MHz] 8.160 1.6 8.140 1.8 8.120 2.2 8.100 2.7 8.080 3 8.060 3.6 8.040 8.020 8.000 7.980 7.960 -45 -30 -15 0 15 30 45 60 75 90 105 Temperature [°C] Figure 37-75. 8MHz Internal Oscillator Frequency vs. Temperature Low power mode V_CC_ 8.160 1.8 8.140 2.2 8.120 Frequency [MHz] 1.6 2.7 8.100 3 8.080 3.6 8.060 8.040 8.020 8.
ATxmega32E5/16E5/8E5 Figure 37-76. 8MHz Internal Oscillator CAL Calibration Step Size VCC = 3.0V Temperature 1.50 -40 25 Frequency Step Size [%] 1.25 85 105 1.00 0.75 0.50 0.25 0.00 0 32 64 96 128 160 192 224 256 CAL Figure 37-77. 8MHz Internal Oscillator Frequency vs. Calibration VCC = 3.0V, normal mode Temperature 16.000 -40 25 14.000 85 Frequency [MHz] 12.000 105 10.000 8.000 6.000 4.000 2.000 0 32 64 96 128 160 192 224 256 CAL 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 37.10.4 32MHz Internal Oscillator Figure 37-78. 32MHz Internal Oscillator Frequency vs. Temperature DFLL disabled V_CC_[V] 34.00 1.6 1.8 33.50 2.2 Frequency [MHz] 33.00 2.7 32.50 3 32.00 3.6 31.50 31.00 30.50 30.00 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 Temperature [°C] Figure 37-79. 32MHz Internal Oscillator Frequency vs. Temperature DFLL enabled, from the 32.768kHz internal oscillator V_CC_ [V] Frequency [MHz] 32.10 1.6 32.08 1.8 32.
ATxmega32E5/16E5/8E5 Figure 37-80. 32MHz Internal Oscillator CALA Calibration Step Size VCC = 3.0V Temperature Frequency Step Size [%] 0.25 -40 0.24 25 0.23 85 0.22 105 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0 16 32 48 64 80 96 112 128 CALA Figure 37-81. 32MHz Internal Oscillator Frequency vs. CALA Calibration Value VCC = 3.0V Temperature 54 25 52 85 50 Frequency [MHz] -40 105 48 46 44 42 40 38 0 16 32 48 64 80 96 112 128 CALA 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 Figure 37-82. 32MHz internal Oscillator Frequency vs. CALB Calibration Value VCC = 3.0V Temperature 70.00 -40 25 85 Frequency [MHz] 60.00 105 50.00 40.00 30.00 20.00 0 8 16 24 32 40 48 56 64 CALB 37.11 Two-wire Interface Characteristics Figure 37-83. SDA Fall Time vs. Temperature 80 Mode Fall Time [ns] 70 STD 60 FAST 50 FAST + 40 30 20 10 -40 -20 0 20 40 60 80 100 120 Temperature [°C] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 Figure 37-84. SDA Fall Time vs. VCC 70 Mode Fall Time [ns] 60 STD FAST 50 FAST + 40 30 20 10 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 Vcc [V] 37.12 PDI Characteristics Figure 37-85. Maximum PDI Frequency vs. VCC T [°C] 24 -40 25 Maximum Frequency [MHz] 21 85 105 18 15 12 9 6 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 Vcc [V] 2018 Microchip Technology Inc.
ATxmega32E5/16E5/8E5 38. Errata – ATxmega32E5 / ATxmega16E5 / ATxmega8E5 38.1 Rev. B • DAC: AREF on PD0 is not available for the DAC • ADC: Offset correction fails in unsigned mode • EEPROM write and Flash write operations fails under 2.
ATxmega32E5/16E5/8E5 Issue: TWI SM bus level one Master or slave remembering data If a write is made to Data register, prior to Address register, the TWI design sends the data as soon as the write to Address register is made. But the send data will be always 0x00.
ATxmega32E5/16E5/8E5 38.2 Rev.
ATxmega32E5/16E5/8E5 Issue: ADC: Averaging is failing when channel scan is enabled For a correct operation, the averaging must complete on the on-going channel before incrementing the input offset. In the current implementation, the input offset is incremented after the ADC sampling is done. Workaround: None. Issue: ADC: Averaging in single conversion requires multiple conversion triggers For a normal operation, an unique start of conversion trigger starts a complete average operation.
ATxmega32E5/16E5/8E5 Issue: AC: Flag can not be cleared if the module is not enabled It is not possible to clear the AC interrupt flags without enabling either of the analog comparators. Workaround: Clear the interrupt flags before disabling the module. Issue: USART: Receiver not functional when variable data length and start frame detector are enabled When using USART in variable frame length with XCL PEC01 configuration and start frame detection activated, the USART receiver is not functional.
ATxmega32E5/16E5/8E5 39. Revision History Please note that referring page numbers in this section are referred to this document. The referring revision in this document section are referring to the document revision. 39.1 Rev A – 08/2018 1. • Updated the document to Microchip style. • New Microchip document number. Previous version was Atmel document 8153 rev. K. 2. • Updated “8MHz Calibrated Internal Oscillator” on page 28 for the clarification of the frequency drift. 39.2 1. 39.
ATxmega32E5/16E5/8E5 39.6 1. 39.7 1. 39.8 1. 39.9 1. 8153G – 10/2013 Updated wake-up time from power-save mode for 32MHz internal oscillator from 0.2µs to 5.0µs in Table 36-5 on page 82. 8153F – 08/2013 TWI characteristics: Units of Data setup time (tSU;DAT) changed from µs to ns in Table 36-30 on page 98. 8153E – 06/2013 Errata “Rev. B” : Updated date code from 1318 to 1324 in “Temperature sensor not calibrated” on page 144.
ATxmega32E5/16E5/8E5 The Microchip Web Site Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers.
ATXMEGA32E5/16E5/8E5 Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature.
Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.
ATxmega32E5/16E5/8E5 TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.