Datasheet
Table Of Contents
- Features
- 1. Ordering Information
- 2. Pinout/Block Diagram
- 3. Overview
- 4. Resources
- 5. Capacitive touch sensing
- 6. AVR CPU
- 7. Memories
- 8. DMAC – Direct Memory Access Controller
- 9. Event System
- 10. System Clock and Clock options
- 10.1 Features
- 10.2 Overview
- 10.3 Clock Sources
- 10.3.1 32kHz Ultra Low Power Internal Oscillator
- 10.3.2 32.768kHz Calibrated Internal Oscillator
- 10.3.3 32.768kHz Crystal Oscillator
- 10.3.4 0.4 - 16MHz Crystal Oscillator
- 10.3.5 2MHz Run-time Calibrated Internal Oscillator
- 10.3.6 32MHz Run-time Calibrated Internal Oscillator
- 10.3.7 External Clock Sources
- 10.3.8 PLL with 1x-31x Multiplication Factor
- 11. Power Management and Sleep Modes
- 12. System Control and Reset
- 13. WDT – Watchdog Timer
- 14. Interrupts and Programmable Multilevel Interrupt Controller
- 15. I/O Ports
- 16. TC0/1 – 16-bit Timer/Counter Type 0 and 1
- 17. TC2 - Timer/Counter Type 2
- 18. AWeX – Advanced Waveform Extension
- 19. Hi-Res – High Resolution Extension
- 20. RTC – 16-bit Real-Time Counter
- 21. USB – Universal Serial Bus Interface
- 22. TWI – Two-Wire Interface
- 23. SPI – Serial Peripheral Interface
- 24. USART
- 25. IRCOM – IR Communication Module
- 26. AES and DES Crypto Engine
- 27. CRC – Cyclic Redundancy Check Generator
- 28. ADC – 12-bit Analog to Digital Converter
- 29. DAC – 12-bit Digital to Analog Converter
- 30. AC – Analog Comparator
- 31. Programming and Debugging
- 32. Pinout and Pin Functions
- 33. Peripheral Module Address Map
- 34. Instruction Set Summary
- 35. Packaging information
- 36. Electrical Characteristics
- 36.1 ATxmega16A4U
- 36.1.1 Absolute Maximum Ratings
- 36.1.2 General Operating Ratings
- 36.1.3 Current consumption
- 36.1.4 Wake-up time from sleep modes
- 36.1.5 I/O Pin Characteristics
- 36.1.6 ADC characteristics
- 36.1.7 DAC Characteristics
- 36.1.8 Analog Comparator Characteristics
- 36.1.9 Bandgap and Internal 1.0V Reference Characteristics
- 36.1.10 Brownout Detection Characteristics
- 36.1.11 External Reset Characteristics
- 36.1.12 Power-on Reset Characteristics
- 36.1.13 Flash and EEPROM Memory Characteristics
- 36.1.14 Clock and Oscillator Characteristics
- 36.1.14.1 Calibrated 32.768kHz Internal Oscillator characteristics
- 36.1.14.2 Calibrated 2MHz RC Internal Oscillator characteristics
- 36.1.14.3 Calibrated and tunable 32MHz internal oscillator characteristics
- 36.1.14.4 32kHz Internal ULP Oscillator characteristics
- 36.1.14.5 Internal Phase Locked Loop (PLL) characteristics
- 36.1.14.6 External clock characteristics
- 36.1.14.7 External 16MHz crystal oscillator and XOSC characteristic
- 36.1.14.8 External 32.768kHz crystal oscillator and TOSC characteristics
- 36.1.15 SPI Characteristics
- 36.1.16 Two-Wire Interface Characteristics
- 36.2 ATxmega32A4U
- 36.2.1 Absolute Maximum Ratings
- 36.2.2 General Operating Ratings
- 36.2.3 Current consumption
- 36.2.4 Wake-up time from sleep modes
- 36.2.5 I/O Pin Characteristics
- 36.2.6 ADC characteristics
- 36.2.7 DAC Characteristics
- 36.2.8 Analog Comparator Characteristics
- 36.2.9 Bandgap and Internal 1.0V Reference Characteristics
- 36.2.10 Brownout Detection Characteristics
- 36.2.11 External Reset Characteristics
- 36.2.12 Power-on Reset Characteristics
- 36.2.13 Flash and EEPROM Memory Characteristics
- 36.2.14 Clock and Oscillator Characteristics
- 36.2.14.1 Calibrated 32.768kHz Internal Oscillator characteristics
- 36.2.14.2 Calibrated 2MHz RC Internal Oscillator characteristics
- 36.2.14.3 Calibrated and tunable 32MHz internal oscillator characteristics
- 36.2.14.4 32kHz Internal ULP Oscillator characteristics
- 36.2.14.5 Internal Phase Locked Loop (PLL) characteristics
- 36.2.14.6 External clock characteristics
- 36.2.14.7 External 16MHz crystal oscillator and XOSC characteristic
- 36.2.14.8 External 32.768kHz crystal oscillator and TOSC characteristics
- 36.2.15 SPI Characteristics
- 36.2.16 Two-Wire Interface Characteristics
- 36.3 ATxmega64A4U
- 36.3.1 Absolute Maximum Ratings
- 36.3.2 General Operating Ratings
- 36.3.3 Current consumption
- 36.3.4 Wake-up time from sleep modes
- 36.3.5 I/O Pin Characteristics
- 36.3.6 ADC characteristics
- 36.3.7 DAC Characteristics
- 36.3.8 Analog Comparator Characteristics
- 36.3.9 Bandgap and Internal 1.0V Reference Characteristics
- 36.3.10 Brownout Detection Characteristics
- 36.3.11 External Reset Characteristics
- 36.3.12 Power-on Reset Characteristics
- 36.3.13 Flash and EEPROM Memory Characteristics
- 36.3.14 Clock and Oscillator Characteristics
- 36.3.14.1 Calibrated 32.768kHz Internal Oscillator characteristics
- 36.3.14.2 Calibrated 2MHz RC Internal Oscillator characteristics
- 36.3.14.3 Calibrated and tunable 32MHz internal oscillator characteristics
- 36.3.14.4 32kHz Internal ULP Oscillator characteristics
- 36.3.14.5 Internal Phase Locked Loop (PLL) characteristics
- 36.3.14.6 External clock characteristics
- 36.3.14.7 External 16MHz crystal oscillator and XOSC characteristic
- 36.3.14.8 External 32.768kHz crystal oscillator and TOSC characteristics
- 36.3.15 SPI Characteristics
- 36.3.16 Two-Wire Interface Characteristics
- 36.4 ATxmega128A4U
- 36.4.1 Absolute Maximum Ratings
- 36.4.2 General Operating Ratings
- 36.4.3 Current consumption
- 36.4.4 Wake-up time from sleep modes
- 36.4.5 I/O Pin Characteristics
- 36.4.6 ADC characteristics
- 36.4.7 DAC Characteristics
- 36.4.8 Analog Comparator Characteristics
- 36.4.9 Bandgap and Internal 1.0V Reference Characteristics
- 36.4.10 Brownout Detection Characteristics
- 36.4.11 External Reset Characteristics
- 36.4.12 Power-on Reset Characteristics
- 36.4.13 Flash and EEPROM Memory Characteristics
- 36.4.14 Clock and Oscillator Characteristics
- 36.4.14.1 Calibrated 32.768kHz Internal Oscillator characteristics
- 36.4.14.2 Calibrated 2MHz RC Internal Oscillator characteristics
- 36.4.14.3 Calibrated and tunable 32MHz internal oscillator characteristics
- 36.4.14.4 32kHz Internal ULP Oscillator characteristics
- 36.4.14.5 Internal Phase Locked Loop (PLL) characteristics
- 36.4.14.6 External clock characteristics
- 36.4.14.7 External 16MHz crystal oscillator and XOSC characteristic
- 36.4.14.8 External 32.768kHz crystal oscillator and TOSC characteristics
- 36.4.15 SPI Characteristics
- 36.4.16 Two-Wire Interface Characteristics
- 36.1 ATxmega16A4U
- 37. Typical Characteristics
- 37.1 ATxmega16A4U
- 37.1.1 Current consumption
- 37.1.2 I/O Pin Characteristics
- 37.1.3 ADC Characteristics
- 37.1.4 DAC Characteristics
- 37.1.5 Analog Comparator Characteristics
- 37.1.6 Internal 1.0V reference Characteristics
- 37.1.7 BOD Characteristics
- 37.1.8 External Reset Characteristics
- 37.1.9 Power-on Reset Characteristics
- 37.1.10 Oscillator Characteristics
- 37.1.11 Two-Wire Interface characteristics
- 37.1.12 PDI characteristics
- 37.2 ATxmega32A4U
- 37.2.1 Current consumption
- 37.2.2 I/O Pin Characteristics
- 37.2.3 ADC Characteristics
- 37.2.4 DAC Characteristics
- 37.2.5 Analog Comparator Characteristics
- 37.2.6 Internal 1.0V reference Characteristics
- 37.2.7 BOD Characteristics
- 37.2.8 External Reset Characteristics
- 37.2.9 Power-on Reset Characteristics
- 37.2.10 Oscillator Characteristics
- 37.2.11 Two-Wire Interface characteristics
- 37.2.12 PDI characteristics
- 37.3 ATxmega64A4U
- 37.3.1 Current consumption
- 37.3.2 I/O Pin Characteristics
- 37.3.3 ADC Characteristics
- 37.3.4 DAC Characteristics
- 37.3.5 Analog Comparator Characteristics
- 37.3.6 Internal 1.0V reference Characteristics
- 37.3.7 BOD Characteristics
- 37.3.8 External Reset Characteristics
- 37.3.9 Power-on Reset Characteristics
- 37.3.10 Oscillator Characteristics
- 37.3.11 Two-Wire Interface characteristics
- 37.3.12 PDI characteristics
- 37.4 ATxmega128A4U
- 37.4.1 Current consumption
- 37.4.2 I/O Pin Characteristics
- 37.4.3 ADC Characteristics
- 37.4.4 DAC Characteristics
- 37.4.5 Analog Comparator Characteristics
- 37.4.6 Internal 1.0V reference Characteristics
- 37.4.7 BOD Characteristics
- 37.4.8 External Reset Characteristics
- 37.4.9 Power-on Reset Characteristics
- 37.4.10 Oscillator Characteristics
- 37.4.11 Two-Wire Interface characteristics
- 37.4.12 PDI characteristics
- 37.1 ATxmega16A4U
- 38. Errata
- 39. Datasheet Revision History
- Table of Contents

49
XMEGA A4U [DATASHEET]
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014
28. ADC – 12-bit Analog to Digital Converter
28.1 Features
z One Analog to Digital Converter (ADC)
z 12-bit resolution
z Up to two million samples per second
z Two inputs can be sampled simultaneously using ADC and 1x gain stage
z Four inputs can be sampled within 1.5µs
z Down to 2.5µs conversion time with 8-bit resolution
z Down to 3.5µs conversion time with 12-bit resolution
z Differential and single-ended input
z Up to 12 single-ended inputs
z 12x4 differential inputs without gain
z 8x4 differential inputs with gain
z Built-in differential gain stage
z 1/2x, 1x, 2x, 4x, 8x, 16x, 32x, and 64x gain options
z Single, continuous and scan conversion options
z Four internal inputs
z Internal temperature sensor
z DAC output
z AV
CC
voltage divided by 10
z 1.1V bandgap voltage
z Four conversion channels with individual input control and result registers
z Enable four parallel configurations and results
z Internal and external reference options
z Compare function for accurate monitoring of user defined thresholds
z Optional event triggered conversion for accurate timing
z Optional DMA transfer of conversion results
z Optional interrupt/event on compare result
28.2 Overview
The ADC converts analog signals to digital values. The ADC has 12-bit resolution and is capable of converting up to
two million samples per second (msps). The input selection is flexible, and both single-ended and differential
measurements can be done. For differential measurements, an optional gain stage is available to increase the
dynamic range. In addition, several internal signal inputs are available. The ADC can provide both signed and
unsigned results.
This is a pipelined ADC that consists of several consecutive stages. The pipelined design allows a high sample rate at
a low system clock frequency. It also means that a new input can be sampled and a new ADC conversion started
while other ADC conversions are still ongoing. This removes dependencies between sample rate and propagation
delay.
The ADC has four conversion channels (0-3) with individual input selection, result registers, and conversion start
control. The ADC can then keep and use four parallel configurations and results, and this will ease use for
applications with high data throughput or for multiple modules using the ADC independently. It is possible to use DMA
to move ADC results directly to memory or peripherals when conversions are done.
Both internal and external reference voltages can be used. An integrated temperature sensor is available for use with
the ADC. The output from the DAC, AV
CC
/10 and the bandgap voltage can also be measured by the ADC.
The ADC has a compare function for accurate monitoring of user defined thresholds with minimum software
intervention required.