ATxmega128A1U/ATxmega64A1U XMEGA® A1U Data Sheet Introduction The AVR® XMEGA® AU is a family of low power, high performance, and peripheral rich 8/16-bit microcontrollers based on the AVR enhanced RISC architecture. The XMEGA A1U is a 100-pins device ranging from 64KB to 128KB Flash, with 4KB to 8KB SRAM, 2KB EEPROM and up to 8KB boot section. The ATxmegaA1U devices operate at a maximum frequency of 32MHz.
ATxmega128A1U/ATxmega64A1U CRC-16 (CRC-CCITT) and CRC-32 (IEEE® 802.
ATxmega128A1U/ATxmega64A1U Table of Contents 1 Ordering Information ............................................................................... 8 2 Pinout/Block Diagram .............................................................................. 9 3 Overview ................................................................................................. 11 3.1 4 Block Diagram ................................................................................................. 12 Resources .......
ATxmega128A1U/ATxmega64A1U 9 8.1 Features .......................................................................................................... 23 8.2 Overview.......................................................................................................... 23 Event System .......................................................................................... 24 9.1 Features ..........................................................................................................
ATxmega128A1U/ATxmega64A1U 17 TC2 – Time/Counter Type 2 ................................................................... 42 17.1 Features .......................................................................................................... 42 17.2 Overview.......................................................................................................... 42 18 AWeX – Advanced Waveform Extension ............................................. 43 18.1 Features ................................
ATxmega128A1U/ATxmega64A1U 28 EBI – External Bus Interface ................................................................. 55 28.1 Features .......................................................................................................... 55 28.2 Overview.......................................................................................................... 55 29 ADC – 12-bit Analog to Digital Converter ............................................ 56 29.1 Features ..........................
ATxmega128A1U/ATxmega64A1U 40 Datasheet Revision History ................................................................. 217 40.1 Rev. A – 08/2018 ........................................................................................... 217 40.2 8385I – 07/2014............................................................................................. 217 40.3 8385H – 05/2014 ........................................................................................... 217 40.4 8385G – 11/2013.....
ATxmega128A1U/ATxmega64A1U 1.
ATxmega128A1U/ATxmega64A1U 2. Pinout/Block Diagram Figure 2-1. Block diagram and pinout.
ATxmega128A1U/ATxmega64A1U Figure 2-2. BGA-pinout. Top view 1 2 3 4 5 6 Bottom view 7 8 9 10 10 9 8 7 6 5 4 3 2 1 A A B B C C D D E E F F G G H H J J K K Table 2-1. BGA-pinout.
ATxmega128A1U/ATxmega64A1U 3. Overview The AVR XMEGA is a family of low power, high performance, and peripheral rich 8/16-bit microcontrollers based on the AVR enhanced RISC architecture. By executing instructions in a single clock cycle, the AVR XMEGA devices achieve CPU throughput approaching one million instructions per second (MIPS) per megahertz, allowing the system designer to optimize power consumption versus processing speed.
ATxmega128A1U/ATxmega64A1U 3.1 Block Diagram Figure 3-1. XMEGA A1U Block Diagram. Digital function Bus masters, programming, debug, test Analog function EBI Oscillator/Crystal/Clock PR[0..1] XTAL1 PQ[0..3] TOSC1 General Purpose I/O TOSC2 XTAL2 PORT R (2) PORT Q (4) Real Time Counter Watchdog Oscillator DATA BUS DACA PA[0..
ATxmega128A1U/ATxmega64A1U 4. Resources A comprehensive set of development tools, application notes and datasheets are available for download on www.microchip.com. 4.1 Recommended reading • AVR XMEGA AU manual • XMEGA application notes This device data sheet only contains part specific information with a short description of each peripheral and module. The XMEGA AU manual describes the modules and peripherals in depth.
ATxmega128A1U/ATxmega64A1U 6. AVR CPU 6.1 Features 8/16-bit, high-performance AVR RISC CPU 142 instructions Hardware multiplier 32x8-bit registers directly connected to the ALU Stack in RAM Stack pointer accessible in I/O memory space Direct addressing of up to 16MB of program memory and 16MB of data memory True 16/24-bit access to 16/24-bit I/O registers Efficient support for 8-, 16-, and 32-bit arithmetic Configuration change protection of system-critical features 6.
ATxmega128A1U/ATxmega64A1U The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a register. Single-register operations can also be executed in the ALU. After an arithmetic operation, the status register is updated to reflect information about the result of the operation. The ALU is directly connected to the fast-access register file.
ATxmega128A1U/ATxmega64A1U 6.5 Program Flow After reset, the CPU starts to execute instructions from the lowest address in the flash programmemory ‘0.’ The program counter (PC) addresses the next instruction to be fetched. Program flow is provided by conditional and unconditional jump and call instructions capable of addressing the whole address space directly. Most AVR instructions use a 16-bit word format, while a limited number use a 32-bit format.
ATxmega128A1U/ATxmega64A1U • Two 8-bit output operands and one 16-bit result input • One 16-bit output operand and one 16-bit result input Six of the 32 registers can be used as three 16-bit address register pointers for data space addressing, enabling efficient address calculations. One of these address pointers can also be used as an address pointer for lookup tables in flash program memory. 7. Memories 7.
ATxmega128A1U/ATxmega64A1U A separate memory section contains the fuse bytes. These are used for configuring important system functions, and can only be written by an external programmer. The available memory size configurations are shown in “Ordering Information” on page 8. In addition each device has a flash memory signature rows for calibration data, device identification, serial number etc. 7.
ATxmega128A1U/ATxmega64A1U 7.3.3 Boot Loader Section While the application section is used for storing the application code, the boot loader software must be located in the boot loader section because the SPM instruction can only initiate programming when executing from this section. The SPM instruction can access the entire flash, including the boot loader section itself. The protection level for the boot loader section can be selected by the boot loader lock bits.
ATxmega128A1U/ATxmega64A1U opment, I/O Memory, EEPROM and SRAM will always have the same start addresses for all AVR XMEGA devices. The address space for External Memory will always start at the end of Internal SRAM and end at address 0xFFFFFF. Figure 7-2. Data memory map (hexadecimal address). Byte Address ATxmega64A1U 0 I/O Registers (4K) FFF 1000 EEPROM (2K) 17FF Byte Address 0 FFF 1000 17FF RESERVED 2000 Internal SRAM (4K) 2FFF 4000 FFFFFF 7.
ATxmega128A1U/ATxmega64A1U 7.10 Memory Timing Read and write access to the I/O memory takes one CPU clock cycle. A write to SRAM takes one cycle, and a read from SRAM takes two cycles. For burst read (DMA), new data are available every cycle. EEPROM page load (write) takes one cycle, and three cycles are required for read. For burst read, new data are available every second cycle. External memory has multi-cycle read and write.
ATxmega128A1U/ATxmega64A1U Table 7-3. Number of Bytes and Pages in the EEPROM. Devices EEPROM Page Size Size bytes ATxmega64A1U 2K ATxmega128A1U 2K 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U 8. DMAC – Direct Memory Access Controller 8.
ATxmega128A1U/ATxmega64A1U 9. Event System 9.
ATxmega128A1U/ATxmega64A1U 10. System Clock and Clock options 10.1 Features Fast start-up time Safe run-time clock switching Internal oscillators: 32MHz run-time calibrated and tunable oscillator 2MHz run-time calibrated oscillator 32.768kHz calibrated oscillator 32kHz ultra low power (ULP) oscillator with 1kHz output External clock options 0.4MHz - 16MHz crystal oscillator 32.
ATxmega128A1U/ATxmega64A1U Figure 10-1. The clock system, clock sources, and clock distribution. Real Time Counter Peripherals RAM AVR CPU Non-Volatile Memory clkPER clkCPU clkPER2 clkPER4 USB clkUSB Brown-out Detector System Clock Prescalers Watchdog Timer Prescaler clkSYS clkRTC System Clock Multiplexer (SCLKSEL) RTCSRC USBSRC DIV32 DIV32 DIV32 PLL PLLSRC DIV4 XOSCSEL 32 kHz Int. ULP 32.768 kHz Int. OSC 32.768 kHz TOSC 32 MHz Int. Osc 2 MHz Int.
ATxmega128A1U/ATxmega64A1U 10.3.1 32kHz Ultra Low Power Internal Oscillator This oscillator provides an approximate 32kHz clock. The 32kHz ultra low power (ULP) internal oscillator is a very low power clock source, and it is not designed for high accuracy. The oscillator employs a built-in prescaler that provides a 1kHz output. The oscillator is automatically enabled/disabled when it is used as clock source for any part of the device. This oscillator can be selected as the clock source for the RTC. 10.3.
ATxmega128A1U/ATxmega64A1U 11. Power Management and Sleep Modes 11.1 Features Power management for adjusting power consumption and functions Five sleep modes Idle Power down Power save Standby Extended standby Power reduction register to disable clock and turn off unused peripherals in active and idle modes 11.2 Overview Various sleep modes and clock gating are provided in order to tailor power consumption to application requirements.
ATxmega128A1U/ATxmega64A1U 11.3.3 Power-save Mode Power-save mode is identical to power down, with one exception. If the real-time counter (RTC) is enabled, it will keep running during sleep, and the device can also wake up from either an RTC overflow or compare match interrupt. 11.3.4 Standby Mode Standby mode is identical to power down, with the exception that the enabled system clock sources are kept running while the CPU, peripheral, and RTC clocks are stopped. This reduces the wake-up time. 11.3.
ATxmega128A1U/ATxmega64A1U 12. System Control and Reset 12.1 Features Reset the microcontroller and set it to initial state when a reset source goes active Multiple reset sources that cover different situations Power-on reset External reset Watchdog reset Brownout reset PDI reset Software reset Asynchronous operation No running system clock in the device is required for reset Reset status register for reading the reset source from the application code 12.
ATxmega128A1U/ATxmega64A1U 12.4.2 Brownout Detection The on-chip brownout detection (BOD) circuit monitors the VCC level during operation by comparing it to a fixed, programmable level that is selected by the BODLEVEL fuses. If disabled, BOD is forced on at the lowest level during chip erase and when the PDI is enabled. 12.4.3 External Reset The external reset circuit is connected to the external RESET pin.
ATxmega128A1U/ATxmega64A1U 13. WDT – Watchdog Timer 13.1 Features Issues a device reset if the timer is not reset before its timeout period Asynchronous operation from dedicated oscillator 1kHz output of the 32kHz ultra low power oscillator 11 selectable timeout periods, from 8ms to 8s Two operation modes: Normal mode Window mode Configuration lock to prevent unwanted changes 13.2 Overview The watchdog timer (WDT) is a system function for monitoring correct program operation.
ATxmega128A1U/ATxmega64A1U 14. Interrupts and Programmable Multilevel Interrupt Controller 14.
ATxmega128A1U/ATxmega64A1U Program address (base address) Source Interrupt description 0x028 TCC1_INT_base Timer/counter 1 on port C interrupt base 0x030 SPIC_INT_vect SPI on port C interrupt vector 0x032 USARTC0_INT_base USART 0 on port C interrupt base 0x038 USARTC1_INT_base USART 1 on port C interrupt base 0x03E AES_INT_vect AES interrupt vector 0x040 NVM_INT_base Nonvolatile memory interrupt base 0x044 PORTB_INT_base Port B interrupt base 0x048 ACB_INT_base Analog comparator on
ATxmega128A1U/ATxmega64A1U Program address (base address) Source Interrupt description 0x0E4 TCF1_INT_base Timer/counter 1 on port F interrupt base 0x0EC SPIF_INT_vector SPI ion port F interrupt base 0x0EE USARTF0_INT_base USART 0 on port F interrupt base 0x0F4 USARTF1_INT_base USART 1 on port F interrupt base 0x0FA USB_INT_base USB on port D interrupt base 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U 15. I/O Ports 15.
ATxmega128A1U/ATxmega64A1U 15.3 Output Driver All port pins (Pn) have programmable output configuration. The port pins also have configurable slew rate limitation to reduce electromagnetic emission. 15.3.1 Push-pull Figure 15-1. I/O configuration - Totem-pole. DIRn OUTn Pn INn 15.3.2 Pull-down Figure 15-2. I/O configuration - Totem-pole with pull-down (on input). DIRn OUTn Pn INn 15.3.3 Pull-up Figure 15-3. I/O configuration - Totem-pole with pull-up (on input).
ATxmega128A1U/ATxmega64A1U 15.3.4 Bus-keeper The bus-keeper’s weak output produces the same logical level as the last output level. It acts as a pull-up if the last level was ‘1’, and pull-down if the last level was ‘0’. Figure 15-4. I/O configuration - Totem-pole with bus-keeper. DIRn OUTn Pn INn 15.3.5 Others Figure 15-5. Output configuration - Wired-OR with optional pull-down. OUTn Pn INn Figure 15-6. I/O configuration - Wired-AND with optional pull-up.
ATxmega128A1U/ATxmega64A1U 15.4 Input sensing Input sensing is synchronous or asynchronous depending on the enabled clock for the ports, and the configuration is shown in Figure 15-7 on page 39. Figure 15-7.
ATxmega128A1U/ATxmega64A1U 16. TC0/1 – 16-bit Timer/Counter Type 0 and 1 16.
ATxmega128A1U/ATxmega64A1U There are two differences between timer/counter type 0 and type 1. Timer/counter 0 has four CC channels, and timer/counter 1 has two CC channels. All information related to CC channels 3 and 4 is valid only for timer/counter 0. Only Timer/ Counter 0 has the split mode feature that split it into 2 8-bit Timer/Counters with four compare channels each. Some timer/counters have extensions to enable more specialized waveform and frequency generation.
ATxmega128A1U/ATxmega64A1U 17. TC2 – Time/Counter Type 2 17.
ATxmega128A1U/ATxmega64A1U 18. AWeX – Advanced Waveform Extension 18.
ATxmega128A1U/ATxmega64A1U 19. Hi-Res – High Resolution Extension 19.1 Features Increases waveform generator resolution up to 8x (three bits) Supports frequency, single-slope PWM and dual-slope PWM generation Supports the AWeX when this is used for the same timer/counter 19.2 Overview The high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output from a timer/counter by four or eight.
ATxmega128A1U/ATxmega64A1U 20. RTC – 16-bit Real-Time Counter 20.1 Features 16-bit resolution Selectable clock source 32.768kHz external crystal External clock 32.768kHz internal oscillator 32kHz internal ULP oscillator Programmable 10-bit clock prescaling One compare register One period register Clear counter on period overflow Optional interrupt/event on overflow and compare match 20.
ATxmega128A1U/ATxmega64A1U 21. USB – Universal Serial Bus Interface 21.1 Features One USB 2.0 full speed (12Mbps) and low speed (1.
ATxmega128A1U/ATxmega64A1U To maximize throughput, an endpoint address can be configured for ping-pong operation. When done, the input and output endpoints are both used in the same direction. The CPU or DMA controller can then read/write one data buffer while the USB module writes/reads the others, and vice versa. This gives double buffered communication.
ATxmega128A1U/ATxmega64A1U 22. TWI – Two-Wire Interface 22.
ATxmega128A1U/ATxmega64A1U It is possible to disable the TWI drivers in the device, and enable a four-wire digital interface for connecting to an external TWI bus driver. This can be used for applications where the device operates from a different VCC voltage than used by the TWI bus. PORTC, PORTD, PORTE, and PORTF each has one TWI. Notation of these peripherals are TWIC, TWID, TWIE, and TWIF. 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U 23. SPI – Serial Peripheral Interface 23.1 Features Four identical SPI peripherals Full-duplex, three-wire synchronous data transfer Master or slave operation Lsb first or msb first data transfer Eight programmable bit rates Interrupt flag at the end of transmission Write collision flag to indicate data collision Wake up from idle sleep mode Double speed master mode 23.
ATxmega128A1U/ATxmega64A1U 24. USART 24.
ATxmega128A1U/ATxmega64A1U 25. IRCOM – IR Communication Module 25.1 Features Pulse modulation/demodulation for infrared communication IrDA compatible for baud rates up to 115.2Kbps Selectable pulse modulation scheme 3/16 of the baud rate period Fixed pulse period, 8-bit programmable Pulse modulation disabled Built-in filtering Can be connected to and used by any USART 25.
ATxmega128A1U/ATxmega64A1U 26. AES and DES Crypto Engine 26.1 Features Data Encryption Standard (DES) CPU instruction Advanced Encryption Standard (AES) crypto module DES Instruction Encryption and decryption DES supported Encryption/decryption in 16 CPU clock cycles per 8-byte block AES crypto module Encryption and decryption Supports 128-bit keys Supports XOR data load mode to the state memory Encryption/decryption in 375 clock cycles per 16-byte block 26.
ATxmega128A1U/ATxmega64A1U 27. CRC – Cyclic Redundancy Check Generator 27.
ATxmega128A1U/ATxmega64A1U 28. EBI – External Bus Interface 28.
ATxmega128A1U/ATxmega64A1U 29. ADC – 12-bit Analog to Digital Converter 29.1 Features Two Analog to Digital Converters 12-bit resolution Up to two million samples per second Two inputs can be sampled simultaneously using ADC and 1x gain stage Four inputs can be sampled within 1.5µs Down to 2.5µs conversion time with 8-bit resolution Down to 3.
ATxmega128A1U/ATxmega64A1U The ADC has a compare function for accurate monitoring of user defined thresholds with minimum software intervention required. Figure 29-1. ADC overview. ADC0 Compare • •• ADC15 ADC0 Internal signals VINP •• • ADC7 ADC4 CH1 Result Threshold (Int Req) ½x - 64x CH2 Result • •• ADC7 Int. signals < > CH0 Result Internal signals CH3 Result VINN ADC0 • •• ADC3 Int. signals Internal 1.00V Internal AVCC/1.
ATxmega128A1U/ATxmega64A1U 30. DAC – 12-bit Digital to Analog Converter 30.
ATxmega128A1U/ATxmega64A1U A DAC conversion is automatically started when new data to be converted are available. Events from the event system can also be used to trigger a conversion, and this enables synchronized and timed conversions between the DAC and other peripherals, such as a timer/counter. The DMA controller can be used to transfer data to the DAC. The DAC has high drive strength, and is capable of driving both resistive and capacitive loads, aswell as loads which combine both.
ATxmega128A1U/ATxmega64A1U 31. AC – Analog Comparator 31.
ATxmega128A1U/ATxmega64A1U Figure 31-1. Analog comparator overview. Pin Input + AC0OUT Pin Input Hysteresis DAC Voltage Scaler Enable ACnMUXCTRL ACnCTRL Interrupt Mode WINCTRL Enable Bandgap Interrupt Sensititivity Control & Window Function Interrupts Events Hysteresis + Pin Input AC1OUT Pin Input The window function is realized by connecting the external inputs of the two analog comparators in a pair as shown in Figure 31-2. Figure 31-2. Analog comparator window function.
ATxmega128A1U/ATxmega64A1U 32. PDI – Programming and Debugging 32.
ATxmega128A1U/ATxmega64A1U 33. Pinout and Pin Functions The device pinout is shown in “Pinout/Block Diagram” on page 9. In addition to general purpose I/O functionality, each pin can have several alternate functions. This will depend on which peripheral is enabled and connected to the actual pin. Only one of the pin functions can be used at time. 33.1 Alternate Pin Function Description The tables below show the notation for all pin functions available and describe its function. 33.1.
ATxmega128A1U/ATxmega64A1U 33.1.5 Timer/Counter and AWEX functions OCnxLS Output Compare Channel x Low Side for Timer/Counter n OCnxHS Output Compare Channel x High Side for Timer/Counter n 33.1.
ATxmega128A1U/ATxmega64A1U 33.2 Alternate Pin Functions The tables below show the primary/default function for each pin on a port in the first column, the pin number in the second column, and then all alternate pin functions in the remaining columns. The head row shows what peripheral that enable and use the alternate pin functions. For better flexibility, some alternate functions also have selectable pin locations for their functions, this is noted under the the first table where this apply. Table 33-1.
ATxmega128A1U/ATxmega64A1U PIN# INTERRUPT TCC0(1)(2) AWEXC PC1 16 SYNC OC0B OC0AHS XCK0 PC2 17 SYNC/ASYNC OC0C OC0BLS RXD0 PC3 18 SYNC OC0D OC0BHS TXD0 PC4 19 SYNC OC0CLS OC1A PC5 20 SYNC OC0CHS OC1B PC6 21 SYNC PC7 22 SYNC PORT C Notes: TCC1 USARTC0(3) SPIC(4) TWIC CLOCKOUT(5) EVENTOUT(6) SCL SS XCK1 MOSI OC0DLS RXD1 MISO clkRTC OC0DHS TXD1 SCK clkPER EVOUT 1. Pin mapping of all TC0 can optionally be moved to high nibble of port.
ATxmega128A1U/ATxmega64A1U Notes: 1. All pins on the port can optionally be used for EBI chip select or address lines. Refer to the EBIOUT register description in the XMEGA AU Manual. Table 33-6. PORT F Port F - alternate functions. PIN # INTERRUPT TCF0 TCF1 USARTF0 GND 43 VCC 44 PF0 45 SYNC OC0A PF1 46 SYNC OC0B XCK0 PF2 47 SYNC/ASYNC OC0C RXD0 PF3 48 SYNC OC0D TXD0 PF4 49 SYNC OC1A PF5 50 SYNC OC1B PF6 51 PF7 52 Note: 1.
ATxmega128A1U/ATxmega64A1U PORT J PIN # INTERRUPT SDRAM 3P SRAM ALE1 SRAM ALE12 LPC3 ALE1 LPC2 ALE1 LPC2 ALE12 PJ2 67 SYNC/ASYNC D2 D2 D2 D2/A2 D2/A2 D2/A2/A10 PJ3 68 SYNC D3 D3 D3 D3/A3 D3/A3 D3/A3/A11 PJ4 69 SYNC A8 D4 D4 D4/A4 D4/A4 D4/A4/A12 PJ5 70 SYNC A9 D5 D5 D5/A5 D5/A5 D5/A5/A13 PJ6 71 SYNC A10 D6 D6 D6/A6 D6/A6 D6/A6/A14 PJ7 72 SYNC A11 D7 D7 D7/A7 D7/A7 D7/A7/A15 Table 33-9. PORT K Port K - alternate functions.
ATxmega128A1U/ATxmega64A1U 34. Peripheral Module Address Map The address maps show the base address for each peripheral and module in XMEGA A1U. For complete register description and summary for each peripheral module, refer to the XMEGA AU manual. Table 34-1. Peripheral module address map.
ATxmega128A1U/ATxmega64A1U Base address Name Description 0x0480 TWIC Two Wire Interface on port C 0x0490 TWID Two Wire Interface on port D 0x04A0 TWIE Two Wire Interface on port E 0x04B0 TWIF Two Wire Interface on port F 0x04C0 USB USB Device 0x0600 PORTA Port A 0x0620 PORTB Port B 0x0640 PORTC Port C 0x0660 PORTD Port D 0x0680 PORTE Port E 0x06A0 PORTF Port F 0x06E0 PORTH Port H 0x0700 PORTJ Port J 0x0720 PORTK Port K 0x07C0 PORTQ Port Q 0x07E0 PORTR Port R
ATxmega128A1U/ATxmega64A1U Base address Name Description 0x0A90 HIRESE 0x0AA0 USARTE0 USART 0 on port E 0x0AB0 USARTE1 USART 1 on port E 0x0AC0 SPIE Serial Peripheral Interface on port E 0x0B00 TCF0 Timer/Counter 0 on port F 0x0B40 TCF1 Timer/Counter 1 on port F 0x0B90 HIRESF 0x0BA0 USARTF0 USART 0 on port F 0x0BB0 USARTF1 USART 1 on port F 0x0BC0 SPIF 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U 35.
ATxmega128A1U/ATxmega64A1U Mnemonics Operands Description RCALL k Relative Call Subroutine Operation Flags #Clocks PC PC + k + 1 None 2 / 3 (1) ICALL Indirect Call to (Z) PC(15:0) PC(21:16) Z, 0 None 2 / 3 (1) EICALL Extended Indirect Call to (Z) PC(15:0) PC(21:16) Z, EIND None 3 (1) call Subroutine PC k None 3 / 4 (1) RET Subroutine Return PC STACK None 4 / 5 (1) RETI Interrupt Return PC STACK I 4 / 5 (1) if (Rd = Rr) PC PC + 2 or 3 None
ATxmega128A1U/ATxmega64A1U Mnemonics Operands Description Flags #Clocks LDI Rd, K Load Immediate Rd K None 1 LDS Rd, k Load Direct from data space Rd (k) None 2 (1)(2) LD Rd, X Load Indirect Rd (X) None 1 (1)(2) LD Rd, X+ Load Indirect and Post-Increment Rd X (X) X+1 None 1 (1)(2) LD Rd, -X Load Indirect and Pre-Decrement X X - 1, Rd (X) X-1 (X) None 2 (1)(2) LD Rd, Y Load Indirect Rd (Y) (Y) None 1 (1)(2) LD Rd, Y+ Load Indirect a
ATxmega128A1U/ATxmega64A1U Mnemonics Operands Description Operation SPM Z+ Store Program Memory and Post-Increment by 2 IN Rd, A In From I/O Location OUT A, Rr Out To I/O Location PUSH Rr Push Register on Stack POP Rd XCH Flags #Clocks (RAMPZ:Z) Z R1:R0, Z+2 None - Rd I/O(A) None 1 I/O(A) Rr None 1 STACK Rr None 1 (1) Pop Register from Stack Rd STACK None 2 (1) Z, Rd Exchange RAM location Temp Rd (Z) Rd, (Z), Temp None 2 LAS Z, Rd Loa
ATxmega128A1U/ATxmega64A1U Mnemonics Operands Description Operation Flags #Clocks SES Set Signed Test Flag S 1 S 1 CLS Clear Signed Test Flag S 0 S 1 SEV Set Two’s Complement Overflow V 1 V 1 CLV Clear Two’s Complement Overflow V 0 V 1 SET Set T in SREG T 1 T 1 CLT Clear T in SREG T 0 T 1 SEH Set Half Carry Flag in SREG H 1 H 1 CLH Clear Half Carry Flag in SREG H 0 H 1 None 1 None 1 MCU control instructions BREAK Break NOP
ATxmega128A1U/ATxmega64A1U 36. Packaging information 36.1 100A PIN 1 B PIN 1 IDENTIFIER E1 e E D1 D C 0°~7° A1 A2 A L COMMON DIMENSIONS (Unit of Measure = mm) MIN NOM MAX A – – 1.20 A1 0.05 – 0.15 A2 0.95 1.00 1.05 D 15.75 16.00 16.25 D1 13.90 14.00 14.10 E 15.75 16.00 16.25 E1 13.90 14.00 14.10 B 0.17 – 0.27 C 0.09 – 0.20 L 0.45 – 0.75 SYMBOL Notes: 1. This package conforms to JEDEC reference MS-026, Variation AED. 2.
ATxmega128A1U/ATxmega64A1U 36.2 100C1 0.12 Z E Marked A1 Identifier SIDE VIEW D A TOP VIEW A1 Øb e A1 Corner 0.90 TYP 10 9 8 7 6 5 4 3 2 1 A 0.90 TYP B C D COMMON DIMENSIONS (Unit of Measure = mm) E D1 F e SYMBOL MIN NOM MAX H A 1.10 – 1.20 J A1 0.30 0.35 0.40 D 8.90 9.00 9.10 E 8.90 9.00 9.10 D1 7.10 7.20 7.30 G K E1 B OT TOM VIEW E1 7.10 7.20 7.30 Øb 0.35 0.40 0.45 e NOT E 0.80 TYP 5/25/06 TITLE 100C1, 100-ball, 9 x 9 x 1.
ATxmega128A1U/ATxmega64A1U 36.3 100C2 E A1 BALL ID 0.10 D A1 TOP VIEW A A2 E1 SIDE VIEW 100 - Ø0.35 ± 0.05 K J H G e COMMON DIMENSIONS (Unit of Measure = mm) F D1 E SYMBOL MIN NOM MAX D A – – 1.00 C A1 0.20 – – B A2 0.65 – – D 6.90 7.00 7.10 A D1 1 2 3 4 5 6 7 8 9 b 5.85 BSC 10 E 6.90 A1 BALL CORNER NOTE e 7.00 7.10 E1 b BOTTOM VIEW 5.85 BSC 0.30 0.35 e 0.40 0.65 BSC 07/11/2012 Package Drawing 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U 37. Electrical Characteristics All typical values are measured at T = 25C unless other temperature condition is given. All minimum and maximum values are valid across operating temperature and voltage unless other conditions are given. Note: For devices that are not available yet, preliminary values in this datasheet are based on simulations, and/or characterization of similar AVR XMEGA microcontrollers.
ATxmega128A1U/ATxmega64A1U Table 37-3. Operating voltage and frequency. Symbol Parameter ClkCPU Condition CPU clock frequency Min. Typ. Max. VCC = 1.6V 0 12 VCC = 1.8V 0 12 VCC = 2.7V 0 32 VCC = 3.6V 0 32 Units MHz The maximum CPU clock frequency depends on VCC. As shown in Figure 37-1 the Frequency vs. VCC curve is linear between 1.8V < VCC < 2.7V. Figure 37-1. Maximum Frequency vs. VCC. MHz 32 Safe Operating Area 12 1.6 2018 Microchip Technology Inc. 1.8 2.7 3.
ATxmega128A1U/ATxmega64A1U 37.1.3 Current consumption Table 37-4. Current consumption for Active mode and sleep modes. Symbol Parameter Condition Min. 32kHz, Ext. Clk Active power consumption(1) 1MHz, Ext. Clk 2MHz, Ext. Clk VCC = 3.0V 95 VCC = 1.8V 350 VCC = 3.0V 700 VCC = 1.8V 650 700 1.2 1.4 15 20 VCC = 3.0V 6.4 VCC = 1.8V 109 VCC = 3.0V 200 VCC = 1.8V 290 380 476 650 6.6 9.2 0.1 1.0 0.1 1.0 1.7 5.0 T = 105°C 6.0 10 WDT and sampled BOD enabled, T = 25°C 1.
ATxmega128A1U/ATxmega64A1U Table 37-5. Current consumption for modules and peripherals. Symbol Parameter Condition(1) Min. ULP oscillator 1.0 32.768kHz int. oscillator 27 2MHz int. oscillator 32MHz int. oscillator BOD Max. Units 85 DFLL enabled with 32.768kHz int. osc. as reference 120 310 DFLL enabled with 32.768kHz int. osc. as reference Watchdog timer 560 µA 1.0 Continuous mode 126 Sampled mode, includes ULP oscillator 1.2 Internal 1.0V reference 89 Temperature sensor 83 3.
ATxmega128A1U/ATxmega64A1U 37.1.4 Wake-up time from sleep modes Table 37-6. Device wake-up time from sleep modes with various system clock sources. Symbol Parameter Condition Wake-up time from idle, standby, and extended standby mode twakeup Wake-up time from Power-save and Power-down mode Note: 1. Min. Typ. (1) External 2MHz clock 2.0 32.768kHz internal oscillator 120 2MHz internal oscillator 2.0 32MHz internal oscillator 0.2 External 2MHz clock 4.5 32.
ATxmega128A1U/ATxmega64A1U 37.1.5 I/O Pin Characteristics The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output voltage limits reflect or exceed this specification. Table 37-7. I/O pin characteristics. Symbol IOH (1)/ IOL (2) VIH Parameter Max. Units -20 20 mA VCC = 2.7 - 3.6V 2 VCC+0.3 VCC = 2.0 - 2.7V 0.7*VCC VCC+0.3 VCC = 1.6 - 2.0V 0.7*VCC VCC+0.3 VCC = 2.7- 3.6V -0.3 0.3*VCC VCC = 2.0 - 2.7V -0.3 0.3*VCC VCC = 1.6 - 2.
ATxmega128A1U/ATxmega64A1U 37.1.6 ADC characteristics Table 37-8. Power supply, reference and input range. Symbol Parameter AVCC Analog supply voltage VREF Reference voltage Condition Min. Typ. VCC0.3 Max. VCC+ 0.3 Units V AVCC- 1.0 0.6 Rin Input resistance Switched 5.0 k Cin Input capacitance Switched 5.0 pF RAREF Reference input resistance (leakage only) >10 M CAREF Reference input capacitance Static load 7 pF VIN Input range AVCC+0. -0.
ATxmega128A1U/ATxmega64A1U Table 37-10. Accuracy characteristics. Symbol Parameter RES Resolution INL(1) DNL(1) Integral non-linearity Differential non-linearity Offset Error Condition(2) Programmable to 12-bit 1. 2. Max. Units 11 11.5 12 Bits VCC-1.0V < VREF< VCC-0.6V ±1.2 ±2 All VREF ±1.5 ±3 2000ksps, differential mode VCC-1.0V < VREF< VCC-0.6V ±1.0 ±2 All VREF ±1.5 ±3 single ended mode ±1.5 ±4 guaranteed monotonic <±0.5 <±1 lsb -1 mV Temperature drift <0.
ATxmega128A1U/ATxmega64A1U Symbol Parameter Gain Error Offset Error, input referred Condition Min. 1x gain, normal mode -0.7 8x gain, normal mode -3.0 64x gain, normal mode -4.8 1x gain, normal mode 0.4 8x gain, normal mode 0.4 64x gain, normal mode 0.4 1x gain, normal mode Noise 1. 37.1.7 Max. Units % mV 0.6 VCC = 3.6V Ext. VREF 8x gain, normal mode mV rms 2.0 64x gain, normal mode Note: Typ.
ATxmega128A1U/ATxmega64A1U Table 37-14. Accuracy characteristics. Symbol RES Parameter Condition Min. Input resolution VREF= Ext 1.0V INL(1) Integral non-linearity VREF=AVCC VREF=INT1V VREF=Ext 1.0V DNL(1) Differential non-linearity VREF=AVCC VREF=INT1V Gain error 37.1.8 Units 12 Bits ±2.0 ±3 VCC = 3.6V ±1.5 ±2.5 VCC = 1.6V ±2.0 ±4 VCC = 3.6V ±1.5 ±4 VCC = 1.6V ±5.0 VCC = 3.6V ±5.0 VCC = 1.6V ±1.5 3.0 VCC = 3.6V ±0.6 1.5 VCC = 1.6V ±1.0 3.5 VCC = 3.6V ±0.6 1.
ATxmega128A1U/ATxmega64A1U Symbol Parameter Condition VCC = 3.0V, T= 85°C tdelay Propagation delay mode = HS mode = HS VCC = 3.0V, T= 85°C 37.1.9 Min. Typ. Max. 60 90 60 mode = LP Units ns 130 Current source calibration range Single mode 2 8 Double mode 4 16 64-Level Voltage Scaler Integral non-linearity (INL) 0.3 0.5 µs lsb Bandgap and Internal 1.0V Reference Characteristics Table 37-16. Bandgap and Internal 1.0V reference characteristics.
ATxmega128A1U/ATxmega64A1U 37.1.11 External Reset Characteristics Table 37-18. External reset characteristics. Symbol tEXT Parameter Condition Min. Typ. Max. Units 86 1000 ns Minimum reset pulse width Reset threshold voltage (VIH) VRST Reset threshold voltage (VIL) 37.1.12 VCC = 2.7 - 3.6V 0.60*VCC VCC = 1.6 - 2.7V 0.60*VCC VCC = 2.7 - 3.6V 0.40*VCC VCC = 1.6 - 2.7V 0.40*VCC V Power-on Reset Characteristics Table 37-19. Power-on reset characteristics.
ATxmega128A1U/ATxmega64A1U Table 37-21. Programming time. Symbol Parameter Chip Erase Flash EEPROM Notes: 1. 2. 37.1.14 37.1.14.1 Condition Min. Typ. (1) 64KB Flash, EEPROM(2) and SRAM Erase 55 Page Erase 4 Page Write 4 Atomic Page Erase and Write 8 Page Erase 4 Page Write 4 Atomic Page Erase and Write 8 Max. Units ms Programming is timed from the 2MHz internal oscillator. EEPROM is not erased if the EESAVE fuse is programmed. Clock and Oscillator Characteristics Calibrated 32.
ATxmega128A1U/ATxmega64A1U 37.1.14.3 Calibrated and tunable 32MHz internal oscillator characteristics Table 37-24. 32MHz internal oscillator characteristics. Symbol Parameter Tunable frequency range Condition Min. DFLL can tune to this frequency over voltage and temperature 30 Factory calibrated frequency 37.1.14.4 Typ. Max. 35 Units MHz 32 Factory calibration accuracy T = 85C, VCC= 3.0V DFLL calibration step size T = 25C, VCC= 3.0V -1.5 1.5 0.
ATxmega128A1U/ATxmega64A1U 37.1.14.6 External clock characteristics Figure 37-3. External clock drive waveform. tCH tCH tCF tCR VIH1 VIL1 tCL tCK Table 37-27. External clock used as system clock without prescaling. Symbol 1/tCK Parameter Clock Frequency (1) tCK Clock Period tCH Clock High Time tCL Clock Low Time tCR Rise Time (for maximum frequency) tCF Fall Time (for maximum frequency) tCK Note: Min. Typ. 1. Symbol Max. VCC = 1.6 - 1.8V 0 12 VCC = 2.7 - 3.6V 0 32 VCC = 1.
ATxmega128A1U/ATxmega64A1U Symbol Parameter tCL Clock Low Time tCR Rise Time (for maximum frequency) tCF Fall Time (for maximum frequency) tCK Notes: Condition Min. VCC = 1.6 - 1.8V 4.5 VCC = 2.7 - 3.6V 2.4 Typ. 37.1.14.7 Units ns VCC = 1.6 - 1.8V 1.5 VCC = 2.7 - 3.6V 1.0 VCC = 1.6 - 1.8V 1.5 VCC = 2.7 - 3.6V 1.0 Change in period from one clock cycle to the next 1. 2. Max.
ATxmega128A1U/ATxmega64A1U Symbol Parameter Condition FRQRANGE=0 FRQRANGE=1 Negative impedance(1) RQ FRQRANGE=2 FRQRANGE=3 ESR Start-up time Min. Typ. 0.4MHz resonator, CL=100pF 13k 1MHz crystal, CL=20pF 9k 2MHz crystal, CL=20pF 2.2k 1MHz crystal, CL=20pF 2.
ATxmega128A1U/ATxmega64A1U 37.1.14.8 External 32.768kHz crystal oscillator and TOSC characteristics Table 37-30. External 32.768kHz crystal oscillator and TOSC characteristics. Symbol Parameter ESR/R1 Recommended crystal equivalent series resistance (ESR) CTOSC1 Parasitic capacitance TOSC1 pin 4.0 CTOSC2 Parasitic capacitance TOSC2 pin 4.1 Parasitic capacitance load 2.0 CL Condition Recommended safety factor Note: 1. Min. Typ. Max. Crystal load capacitance 6.
ATxmega128A1U/ATxmega64A1U 37.1.15 SPI Characteristics Figure 37-5. SPI timing requirements in master mode. SS tSCKR tMOS tSCKF SCK (CPOL = 0) tSCKW SCK (CPOL = 1) tSCKW tMIS MISO (Data Input) tMIH tSCK MSB LSB tMOH tMOH MOSI (Data Output) MSB LSB Figure 37-6. SPI timing requirements in slave mode. SS tSSS tSCKR tSCKF tSSH SCK (CPOL = 0) tSSCKW SCK (CPOL = 1) tSSCKW tSIS MOSI (Data Input) tSIH MSB tSOSSS MISO (Data Output) tSSCK LSB tSOS MSB 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Table 37-31. SPI timing characteristics and requirements. Symbol Parameter tSCK SCK period Master (See Table 22-3 in XMEGA AU Manual) tSCKW SCK high/low width Master 0.5*SCK tSCKR SCK rise time Master 2.7 tSCKF SCK fall time Master 2.7 tMIS MISO setup to SCK Master 11 tMIH MISO hold after SCK Master 0 tMOS MOSI setup SCK Master 0.
ATxmega128A1U/ATxmega64A1U 37.1.16 EBI characteristics Table 37-32. EBI SRAM characteristics and requirements. Symbol Parameter tClkPER2 SRAM clock period Condition Min. Typ. Max. 0.
ATxmega128A1U/ATxmega64A1U Table 37-33. EBI SDRAM characteristics and requirements. Symbol Parameter tClkPER2 SDRAM clock period Condition Min. Typ. Units 0.5*tClkPER tAH SDRAM address hold time 0.5*tClkPER2 tAS SDRAM address setup time 0.5*tClkPER2 tCH SDRAM clock high-level width 0.5*tClkPER2 tCL SDRAM clock low-level width 0.5*tClkPER2 tCKH SDRAM CKE hold time 0.5*tClkPER2 tCKS SDRAM CKE setup time 0.5*tClkPER2 tCMH SDRAM CS, RAS, CAS, WE, DQM hold time 0.
ATxmega128A1U/ATxmega64A1U Table 37-34. Two-wire interface characteristics. Symbol Parameter Condition Min. Typ. Max. Units VIH Input high voltage 0.7*VCC VCC+0.5 VIL Input low voltage -0.5 0.3*VCC Vhys Hysteresis of Schmitt trigger inputs 0.05*VCC (1) 0 0 0.4 20+0.1Cb 0 20+0.
ATxmega128A1U/ATxmega64A1U 2. Cb = Capacitance of one bus line in pF. 3. fPER = Peripheral clock frequency. 37.2 ATxmega128A1U 37.2.1 Absolute Maximum Ratings Stresses beyond those listed in Table 37-35 on page 103 under may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied.
ATxmega128A1U/ATxmega64A1U Figure 37-8. Maximum Frequency vs. VCC. MHz 32 Safe Operating Area 12 1.6 2018 Microchip Technology Inc. 1.8 2.7 3.
ATxmega128A1U/ATxmega64A1U 37.2.3 Current consumption Table 37-38. Current consumption for Active mode and sleep modes. Symbol Parameter Condition Min. 32kHz, Ext. Clk Active power consumption(1) 1MHz, Ext. Clk 2MHz, Ext. Clk VCC = 3.0V 95 VCC = 1.8V 350 VCC = 3.0V 700 VCC = 1.8V 650 700 1.2 1.4 15 20 VCC = 3.0V 6.4 VCC = 1.8V 109 VCC = 3.0V 200 VCC = 1.8V 290 380 476 650 6.6 9.2 0.1 1.0 0.1 1.0 1.7 5.0 T = 105°C 6.0 10 WDT and sampled BOD enabled, T = 25°C 1.
ATxmega128A1U/ATxmega64A1U Table 37-39. Current consumption for modules and peripherals. Symbol Parameter Condition(1) Min. ULP oscillator 1.0 32.768kHz int. oscillator 27 2MHz int. oscillator 32MHz int. oscillator BOD Max. Units 85 DFLL enabled with 32.768kHz int. osc. as reference 120 310 DFLL enabled with 32.768kHz int. osc. as reference Watchdog timer 560 µA 1.0 Continuous mode 126 Sampled mode, includes ULP oscillator 1.2 Internal 1.0V reference 89 Temperature sensor 83 3.
ATxmega128A1U/ATxmega64A1U 37.2.4 Wake-up time from sleep modes Table 37-40. Device wake-up time from sleep modes with various system clock sources. Symbol Parameter Condition Wake-up time from idle, standby, and extended standby mode twakeup Wake-up time from Power-save and Power-down mode Note: 1. Min. Typ.(1) External 2MHz clock 2.0 32.768kHz internal oscillator 120 2MHz internal oscillator 2.0 32MHz internal oscillator 0.2 External 2MHz clock 4.5 32.
ATxmega128A1U/ATxmega64A1U 37.2.5 I/O Pin Characteristics The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output voltage limits reflect or exceed this specification. Table 37-41. I/O pin characteristics. Symbol IOH (1)/ IOL (2) VIH Parameter Max. Units -20 20 mA VCC = 2.7 - 3.6V 2 VCC+0.3 VCC = 2.0 - 2.7V 0.7*VCC VCC+0.3 VCC = 1.6 - 2.0V 0.7*VCC VCC+0.3 VCC = 2.7- 3.6V -0.3 0.3*VCC VCC = 2.0 - 2.7V -0.3 0.3*VCC VCC = 1.6 - 2.
ATxmega128A1U/ATxmega64A1U 37.2.6 ADC characteristics Table 37-42. Power supply, reference and input range. Symbol Parameter AVCC Analog supply voltage VREF Reference voltage Condition Min. Typ. Max. VCC0.3 VCC+ 0.3 1 AVCC- 0.6 Units V Rin Input resistance Switched 5.0 k Cin Input capacitance Switched 5.
ATxmega128A1U/ATxmega64A1U Table 37-44. Accuracy characteristics. Symbol Parameter RES Resolution INL(1) DNL(1) Integral non-linearity Differential non-linearity Offset Error Condition(2) Programmable to 12-bit 1. 2. Max. Units 11 11.5 12 Bits VCC-1.0V < VREF< VCC-0.6V ±1.2 ±2 All VREF ±1.5 ±3 2000ksps, differential mode VCC-1.0V < VREF< VCC-0.6V ±1.0 ±2 All VREF ±1.5 ±3 single ended mode ±1.5 ±4 guaranteed monotonic <±0.5 <±1 lsb -1 mV Temperature drift <0.
ATxmega128A1U/ATxmega64A1U Symbol Parameter Gain Error Offset Error, input referred Condition Min. 1x gain, normal mode -0.7 8x gain, normal mode -3.0 64x gain, normal mode -4.8 1x gain, normal mode 0.4 8x gain, normal mode 0.4 64x gain, normal mode 0.4 1x gain, normal mode Noise 1. 37.2.7 Max. Units % mV 0.6 VCC = 3.6V Ext. VREF 8x gain, normal mode mV rms 2.0 64x gain, normal mode Note: Typ.
ATxmega128A1U/ATxmega64A1U Table 37-48. Accuracy characteristics. Symbol RES Parameter Condition Min. Input resolution VREF= Ext 1.0V INL(1) Integral non-linearity VREF=AVCC VREF=INT1V VREF=Ext 1.0V DNL(1) Differential non-linearity VREF=AVCC VREF=INT1V Gain error 37.2.8 Units 12 Bits ±2.0 ±3 VCC = 3.6V ±1.5 ±2.5 VCC = 1.6V ±2.0 ±4 VCC = 3.6V ±1.5 ±4 VCC = 1.6V ±5.0 VCC = 3.6V ±5.0 VCC = 1.6V ±1.5 3.0 VCC = 3.6V ±0.6 1.5 VCC = 1.6V ±1.0 3.5 VCC = 3.6V ±0.6 1.
ATxmega128A1U/ATxmega64A1U Symbol Parameter Condition VCC = 3.0V, T= 85°C tdelay Propagation delay mode = HS mode = HS VCC = 3.0V, T= 85°C 37.2.9 Min. Typ. Max. 60 90 60 mode = LP Units ns 130 Current source calibration range Single mode 2 8 Double mode 4 16 64-Level Voltage Scaler Integral non-linearity (INL) 0.3 0.5 µs lsb Bandgap and Internal 1.0V Reference Characteristics Table 37-50. Bandgap and Internal 1.0V reference characteristics.
ATxmega128A1U/ATxmega64A1U 37.2.11 External Reset Characteristics Table 37-52. External reset characteristics. Symbol tEXT Parameter Condition Min. Typ. Max. Units 86 1000 ns Minimum reset pulse width Reset threshold voltage (VIH) VRST Reset threshold voltage (VIL) 37.2.12 VCC = 2.7 - 3.6V 0.60*VCC VCC = 1.6 - 2.7V 0.60*VCC VCC = 2.7 - 3.6V 0.40*VCC VCC = 1.6 - 2.7V 0.40*VCC V Power-on Reset Characteristics Table 37-53. Power-on reset characteristics.
ATxmega128A1U/ATxmega64A1U Table 37-55. Programming time. Symbol Parameter Chip Erase Flash EEPROM Notes: 1. 2. 37.2.14 37.2.14.1 Condition Min. Typ. (1) 128KB Flash, EEPROM(2) and SRAM Erase 75 Page Erase 4 Page Write 4 Atomic Page Erase and Write 8 Page Erase 4 Page Write 4 Atomic Page Erase and Write 8 Max. Units ms Programming is timed from the 2MHz internal oscillator. EEPROM is not erased if the EESAVE fuse is programmed. Clock and Oscillator Characteristics Calibrated 32.
ATxmega128A1U/ATxmega64A1U 37.2.14.3 Calibrated and tunable 32MHz internal oscillator characteristics Table 37-58. 32MHz internal oscillator characteristics. Symbol Parameter Tunable frequency range Condition Min. DFLL can tune to this frequency over voltage and temperature 30 Factory calibrated frequency Factory calibration accuracy DFLL calibration step size 37.2.14.4 Typ. Max. 35 Units MHz 32 T = 85C, VCC= 3.0V -1.5 1.5 T = 105C, VCC= 3.0V -2.5 2.5 % Max. Units T = 25C, VCC= 3.
ATxmega128A1U/ATxmega64A1U 37.2.14.6 External clock characteristics Figure 37-10. External clock drive waveform. tCH tCH tCF tCR VIH1 VIL1 tCL tCK Table 37-61. External clock used as system clock without prescaling. Symbol 1/tCK Parameter Clock Frequency (1) tCK Clock Period tCH Clock High Time tCL Clock Low Time tCR Rise Time (for maximum frequency) tCF Fall Time (for maximum frequency) tCK Note: Min. Typ. 1. Symbol Max. VCC = 1.6 - 1.8V 0 12 VCC = 2.7 - 3.6V 0 32 VCC = 1.
ATxmega128A1U/ATxmega64A1U Symbol Parameter Condition tCR Rise Time (for maximum frequency) tCF Fall Time (for maximum frequency) tCK Notes: Min. Typ. VCC = 1.6 - 1.8V 1.5 VCC = 2.7 - 3.6V 1.0 VCC = 1.6 - 1.8V 1.5 VCC = 2.7 - 3.6V 1.0 Change in period from one clock cycle to the next 1. 2. 37.2.14.7 Max. 10 Units ns ns % System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded. The maximum frequency vs. supply voltage is linear between 1.
ATxmega128A1U/ATxmega64A1U Symbol Parameter Condition FRQRANGE=0 FRQRANGE=1 Negative impedance(1) RQ FRQRANGE=2 FRQRANGE=3 ESR Start-up time Min. Typ. 0.4MHz resonator, CL=100pF 13k 1MHz crystal, CL=20pF 9k 2MHz crystal, CL=20pF 2.2k 1MHz crystal, CL=20pF 2.
ATxmega128A1U/ATxmega64A1U 37.2.14.8 External 32.768kHz crystal oscillator and TOSC characteristics Table 37-64. External 32.768kHz crystal oscillator and TOSC characteristics. Symbol Parameter ESR/R1 Recommended crystal equivalent series resistance (ESR) CTOSC1 Parasitic capacitance TOSC1 pin 4.0 CTOSC2 Parasitic capacitance TOSC2 pin 4.1 Parasitic capacitance load 2.0 CL Condition Recommended safety factor Note: 1. Min. Typ. Max. Crystal load capacitance 6.
ATxmega128A1U/ATxmega64A1U 37.2.15 SPI Characteristics Figure 37-12. SPI timing requirements in master mode. SS tSCKR tMOS tSCKF SCK (CPOL = 0) tSCKW SCK (CPOL = 1) tSCKW tMIS MISO (Data Input) tMIH tSCK MSB LSB tMOH tMOH MOSI (Data Output) MSB LSB Figure 37-13. SPI timing requirements in slave mode. SS tSSS tSCKR tSCKF tSSH SCK (CPOL = 0) tSSCKW SCK (CPOL = 1) tSSCKW tSIS MOSI (Data Input) tSIH MSB tSOSSS MISO (Data Output) tSSCK LSB tSOS MSB 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Table 37-65. SPI timing characteristics and requirements. Symbol Parameter tSCK SCK period Master (See Table 22-3 in XMEGA AU Manual) tSCKW SCK high/low width Master 0.5*SCK tSCKR SCK rise time Master 2.7 tSCKF SCK fall time Master 2.7 tMIS MISO setup to SCK Master 11 tMIH MISO hold after SCK Master 0 tMOS MOSI setup SCK Master 0.
ATxmega128A1U/ATxmega64A1U 37.2.16 EBI characteristics Table 37-66. EBI SRAM characteristics and requirements. Symbol Parameter tClkPER2 SRAM clock period Condition Min. Typ. Max. 0.
ATxmega128A1U/ATxmega64A1U Table 37-67. EBI SDRAM characteristics and requirements. Symbol Parameter tClkPER2 SDRAM clock period Condition Min. Typ. Units 0.5*tClkPER tAH SDRAM address hold time 0.5*tClkPER2 tAS SDRAM address setup time 0.5*tClkPER2 tCH SDRAM clock high-level width 0.5*tClkPER2 tCL SDRAM clock low-level width 0.5*tClkPER2 tCKH SDRAM CKE hold time 0.5*tClkPER2 tCKS SDRAM CKE setup time 0.5*tClkPER2 tCMH SDRAM CS, RAS, CAS, WE, DQM hold time 0.
ATxmega128A1U/ATxmega64A1U Table 37-68. Two-wire interface characteristics. Symbol Parameter Condition Min. Typ. Max. Units VIH Input high voltage 0.7*VCC VCC+0.5 VIL Input low voltage -0.5 0.3*VCC Vhys Hysteresis of Schmitt trigger inputs 0.05*VCC(1) 0 0 0.4 20+0.1Cb 0 20+0.
ATxmega128A1U/ATxmega64A1U 3. fPER = Peripheral clock frequency. 38. Typical Characteristics 38.1 ATxmega64A1U 38.1.1 Current consumption 38.1.1.1 Active mode supply current Figure 38-1. Active supply current vs. frequency. fSYS = 0 - 1MHz external clock, T = 25°C. ICC [µA] 800 3.3V 700 3.0V 600 2.7V 500 2.2V 400 1.8V 300 200 100 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Frequency [MHz] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-2. Active supply current vs. frequency. fSYS = 1 - 32MHz external clock, T = 25°C. 18 3.3 V 16 3.0 V 14 2.7 V ICC [mA] 12 10 2.2 V 8 6 4 1.8 V 2 0 0 4 8 12 16 20 24 28 32 Frequency [MHz] Figure 38-3. Active mode supply current vs. VCC. fSYS = 32.768kHz internal oscillator. 175 -40°C 160 25°C 85°C 105°C 145 I CC [µA] 130 115 100 85 70 55 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-4. Active mode supply current vs. VCC. fSYS = 1MHz external clock. 900 -40°C 25°C 85°C 105°C 830 760 I CC [µA] 690 620 550 480 410 340 270 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-5. Active mode supply current vs. VCC. fSYS = 2MHz internal oscillator. 1800 -40 °C 25 °C 85 °C 105 °C 1650 1500 I CC [µA] 1350 1200 1050 900 750 600 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-6. Active mode supply current vs. VCC. fSYS = 32MHz internal oscillator prescaled to 8MHz. 7.5 -40 °C 25 °C 85 °C 105 °C 6.9 6.3 I CC [mA] 5.7 5.1 4.5 3.9 3.3 2.7 2.1 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-7. Active mode supply current vs. VCC. fSYS = 32MHz internal oscillator. 21 -40 °C 20 25°C 85°C 105°C 19 I CC [mA] 18 17 16 15 14 13 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 VCC [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U 38.1.1.2 Idle mode supply current Figure 38-8. Idle mode supply current vs. frequency. fSYS = 0 - 1MHz external clock, T = 25°C. ICC [µA] 250 225 3.3 V 200 3.0 V 175 2.7 V 150 2.2 V 125 1.8 V 100 75 50 25 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency [MHz] Figure 38-9. Idle mode supply current vs. frequency. fSYS = 1 - 32MHz external clock, T = 25°C. 8 3.3 V 7 3.0 V ICC [mA] 6 2.7 V 5 4 2.2 V 3 2 1.
ATxmega128A1U/ATxmega64A1U Figure 38-10. Idle mode supply current vs. VCC. fSYS = 32.768kHz internal oscillator. 41.5 40.0 105°C 38.5 I CC [µA] 37.0 85 °C -40°C 35.5 25°C 34.0 32.5 31.0 29.5 28.0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-11. Idle mode supply current vs. VCC. fSYS = 1MHz external clock. 270 105 °C 85 °C 25°C -40°C 250 230 I CC [µA] 210 190 170 150 130 110 90 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-12. Idle mode supply current vs. VCC. fSYS = 2MHz internal oscillator. 600 -40°C 25°C 85°C 105°C 550 I CC [µA] 500 450 400 350 300 250 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-13. Idle mode supply current vs. VCC. fSYS = 32MHz internal oscillator prescaled to 8MHz. 3100 -40°C 25°C 85°C 105°C 2800 I CC [µA] 2500 2200 1900 1600 1300 1000 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-14. Idle mode current vs. VCC. fSYS = 32MHz internal oscillator. 8650 -40°C 25°C 85°C 105°C 8300 7950 I CC [µA] 7600 7250 6900 6550 6200 5850 5500 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 VCC [V] 38.1.1.3 Power-down mode supply current Figure 38-15. Power-down mode supply current vs. Temperature. All functions disabled. 6.00 3.3 V 3.0 V 2.7 V 2.2 V 1.8 V 5.25 4.50 I CC [µA] 3.75 3.00 2.25 1.50 0.75 0.
ATxmega128A1U/ATxmega64A1U Figure 38-16. Power-down mode supply current vs. Temperature. Sampled BOD with Watchdog Timer running on ULP oscillator. 6.05 3.3 V 3.0 V 2.7 V 2.2 V 1.8 V 5.30 I CC [µA] 4.55 3.80 3.05 2.30 1.55 0.80 -45 -30 -15 0 15 30 45 60 75 90 105 Temperature [°C] 38.1.1.4 Power-save mode supply current Figure 38-17. Power-save mode supply current vs. VCC. Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC. 0.90 0.85 Normal mode ICC [µA] 0.
ATxmega128A1U/ATxmega64A1U 38.1.1.5 Standby mode supply current Figure 38-18. Standby supply current vs. VCC. Standby, fSYS = 1MHz. 12.5 105°C 11.5 10.5 ICC [µA] 9.5 85°C 8.5 25°C -40°C 7.5 6.5 5.5 4.5 3.5 2.5 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-19. Standby supply current vs. VCC. 25°C, running from different crystal oscillators. 500 16MHz 12MHz 450 ICC [µA] 400 350 8MHz 2MHz 300 250 0.454MHz 200 150 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.
ATxmega128A1U/ATxmega64A1U 38.1.2 I/O Pin Characteristics 38.1.2.1 Pull-up Figure 38-20. I/O pin pull-up resistor current vs. pin voltage. VCC = 1.8V. 80 70 I pin [µA] 60 50 40 30 -40°C 25°C 85°C 105°C 20 10 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 VPIN [V] Figure 38-21. I/O pin pull-up resistor current vs. pin voltage. VCC = 3.0V. 120 105 90 I pin [µA] 75 60 45 30 -40°C 25 °C 85 °C 105°C 15 0 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 VPIN [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-22. I/O pin pull-up resistor current vs. pin voltage. VCC = 3.3V. 140 120 I pin [µA] 100 80 60 40 -40°C 25 °C 85 °C 105°C 20 0 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 -1 0 VPIN [V] 38.1.2.2 Output Voltage vs. Sink/Source Current Figure 38-23. I/O pin output voltage vs. source current. VCC = 1.8V. 1.85 1.70 1.55 V PIN [V] 1.40 1.25 1.10 0.95 -40°C 0.80 25°C 85°C 105°C 0.65 0.
ATxmega128A1U/ATxmega64A1U Figure 38-24. I/O pin output voltage vs. source current. VCC = 3.0V. 3.2 2.9 2.6 V PIN [V] 2.3 2.0 1.7 1.4 -40°C 1.1 105°C 25°C 0.8 85°C 0.5 -30 -27 -24 -21 -18 -15 -12 -9 -6 -3 0 -9 -6 -3 0 IPIN [mA] Figure 38-25. I/O pin output voltage vs. source current. VCC = 3.3V. 3.5 3.2 2.9 2.6 VPIN [V] 2.3 2.0 -40°C 1.7 1.4 25°C 1.1 0.8 85°C 105°C 0.5 -30 -27 -24 -21 -18 -15 -12 IPIN [mA] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-26. I/O pin output voltage vs. source current. 3.8 3.6V 3.4 3.3V VPIN [V] 3.0 2.7V 2.6 2.2 1.8V 1.8 1.4 1.0 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 IPIN [mA] Figure 38-27. I/O pin output voltage vs. sink current. VCC = 1.8V. 1.6 105°C 1.4 1.2 85°C VPIN [V] 1.0 0.8 25°C -40°C 0.6 0.4 0.2 0.0 0 2 4 6 8 10 12 14 16 IPIN [mA] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-28. I/O pin output voltage vs. sink current. VCC = 3.0V. 1.20 1.05 105°C 85°C 0.90 25°C -40°C V PIN [V] 0.75 0.60 0.45 0.30 0.15 0.00 0 3 6 9 12 15 18 21 24 27 30 IPIN [mA] Figure 38-29. I/O pin output voltage vs. sink current. VCC = 3.3V. 1.08 105°C 85°C 25°C -40°C 0.96 0.84 V PIN [V] 0.72 0.60 0.48 0.36 0.24 0.12 0.00 0 4 8 12 16 20 24 28 32 IPIN [mA] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-30. I/O pin output voltage vs. sink current. 1.50 1.8V 1.35 1.20 VPIN [V] 1.05 0.90 2.7V 3.3V 3.6V 0.75 0.60 0.45 0.30 0.15 0.00 5 7 9 11 13 15 17 19 21 23 25 IPIN [mA] 38.1.2.3 Thresholds and Hysteresis Figure 38-31. I/O pin input threshold voltage vs. VCC. T = 25°C. 1.85 VIH 1.70 VIL Vthreshold [V] 1.55 1.40 1.25 1.10 0.95 0.80 0.65 0.50 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-32. I/O pin input threshold voltage vs. VCC. VIH I/O pin read as “1”. 1.88 -40°C 25°C 85°C 105°C 1.76 Vthreshold[V] 1.64 1.52 1.4 1.28 1.16 1.04 0.92 0.8 1.6 1.85 2.1 2.35 2.6 2.85 3.1 3.35 3.6 VCC [V] Figure 38-33. I/O pin input threshold voltage vs. VCC. VIL I/O pin read as “0”. 1.70 105°C 85 °C 25 °C -40°C 1.55 V threshold [V] 1.40 1.25 1.10 0.95 0.80 0.65 0.50 1.6 1.85 2.1 2.35 2.6 2.85 3.1 3.35 3.6 VCC [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-34. I/O pin input hysteresis vs. VCC. 0.36 -40 °C 0.33 Vthreshold [V] 0.3 0.27 25°C 0.24 0.21 85°C 0.18 105°C 0.15 0.12 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 2.4 2.6 2.8 3 VCC [V] 38.1.3 ADC Characteristics Figure 38-35. INL error vs. external VREF. T = 25C, VCC = 3.6V, external reference. 1.6 1.5 Single-ended unsigned mode INL [LSB] 1.4 1.3 Differential mode 1.2 1.1 1 Single-ended signed mode 0.9 0.8 0.7 1 1.2 1.4 1.6 1.8 2 2.
ATxmega128A1U/ATxmega64A1U Figure 38-36. INL error vs. sample rate. T = 25C, VCC = 3.6V, VREF = 2.0V external. 1.17 1.14 Differential mode 1.11 Single-ended Unsigned mode INL [LSB] 1.08 1.05 1.02 Single-ended Signed mode 0.99 0.96 0.93 0.9 500 650 800 950 1100 1250 1400 1550 1700 1850 2000 ADC Sample rate [ksps] Figure 38-37. INL error vs. input code 2 1.5 INL [LSB] 1 0.5 0 -0.5 -1 -1.
ATxmega128A1U/ATxmega64A1U Figure 38-38. DNL error vs. external VREF. T = 25C, VCC = 3.6V, external reference. 1.3 1.2 Single-ended unsigned mode 1.1 DNL [LSB] 1 0.9 0.8 0.7 0.6 Differential mode 0.5 0.4 Single-ended signed mode 0.3 0.2 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 1700 1850 3 VREF [V] Figure 38-39. DNL error vs. sample rate. T = 25C, VCC = 3.6V, VREF = 2.0V external. 0.53 0.51 Differential mode DNL [LSB] 0.49 0.47 Single-ended signed mode 0.45 0.43 0.41 0.
ATxmega128A1U/ATxmega64A1U Figure 38-40. DNL error vs. input code. 0.7 0.6 0.5 DNL [LSB] 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 0 512 1024 1536 2048 2560 3072 3584 4096 ADC input code Figure 38-41. Gain error vs. VREF. T = 25C, VCC = 3.6V, ADC sampling speed = 500ksps. 10 9 Single-ended signed mode Gain Error [mV] 8 7 6 5 Single-ended unsigned mode 4 3 2 Differential mode 1 0 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 VREF [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-42. Gain error vs. VCC. T = 25C, VREF = external 1.0V, ADC sampling speed = 500ksps. 9 8 Single-ended signed mode 7 Gain error [mV] 6 5 4 Single-ended unsigned mode 3 2 Differential mode 1 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-43. ADC Offset error vs. VREF. T = 25C, VCC = 3.6V, ADC sampling speed = 500ksps. -0.8 -0.85 Offset [mV] -0.9 -0.95 -1 -1.05 Differential mode -1.1 -1.15 -1.2 -1.25 -1.3 -1.35 1 1.2 1.4 1.6 1.
ATxmega128A1U/ATxmega64A1U Figure 38-44. Gain error vs. temperature. VCC = 3.0V, VREF = external 2.0V. 11 10 Single-ended Signed Gain Error [mV] 9 8 7 6 5 Single-ended Unsigned 4 3 Differential 2 1 0 -45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 Temperature [ºC] Figure 38-45. ADC Offset vs. VCC. T = 25C, VREF = external 1.0V, ADC sampling speed = 500ksps. -0.2 -0.25 Offset [mV] -0.3 -0.35 Differential mode -0.4 -0.45 -0.5 -0.55 -0.6 -0.65 -0.7 1.6 1.8 2 2.2 2.4 2.6 2.
ATxmega128A1U/ATxmega64A1U Figure 38-46. Noise vs. VREF. T = 25C, VCC = 3.6V, ADC sampling speed = 500ksps. 0.47 0.46 Differential Noise [mV RMS] 0.45 0.44 0.43 0.42 0.41 0.4 0.39 0.38 0.37 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VREF [V] Figure 38-47. Noise vs. VCC. T = 25C, VREF = external 1.0V, ADC sampling speed = 500ksps. 0.42 Noise [mV RMS] 0.41 Differential 0.4 0.39 0.38 0.37 0.36 0.35 1.6 1.8 2 2.2 2.4 2.6 2.8 3 VCC [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U 38.1.4 DAC Characteristics Figure 38-48. DAC INL error vs. VREF. VCC = 3.6V, external reference, room temperature. 1.9 1.8 INL [LSB] 1.7 1.6 1.5 1.4 1.3 1.2 1.1 25°C 1 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 VREF [V] Figure 38-49. DAC DNL error vs. VREF. VCC = 3.6V, external reference, room temperature. 1.35 1.25 DNL [LSB] 1.15 1.05 0.95 0.85 0.75 0.65 25°C 0.55 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 VREF [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-50. DAC noise vs. temperature. VCC = 3.0V, VREF = 2.4V . 0.183 0.181 Noise [mV RMS] 0.179 0.177 0.175 0.173 0.171 0.169 0.167 0.165 -45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 Temperature [ºC] 38.1.5 Analog Comparator Characteristics Figure 38-51. Analog comparator hysteresis vs. VCC. High-speed, small hysteresis. 53 105° C 85 °C 25 °C -40°C 51 49 V HYST [mV] 47 45 43 41 39 37 35 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.
ATxmega128A1U/ATxmega64A1U Figure 38-52. Analog comparator hysteresis vs. VCC. Low power, small hysteresis. 37.0 35.5 105°C 85 °C 34.0 VHYST [mV] 32.5 31.0 25 °C 29.5 -40°C 28.0 26.5 25.0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-53. Analog comparator hysteresis vs. VCC. High-speed mode, large hysteresis. 53 105° C 85 °C 25 °C -40°C 51 49 V HYST [mV] 47 45 43 41 39 37 35 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-54. Analog comparator hysteresis vs. VCC. Low power, large hysteresis. 77 105°C 85°C 74 71 VHYST [mV] 68 65 25°C 62 59 -40°C 56 53 50 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-55. Analog comparator current source vs. calibration value. Temperature = 25C. 8 7 I [µA] 6 5 3.3V 3.0V 2.7V 4 3 2.2V 1.8V 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CALIB[3..0] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-56. Analog comparator current source vs. calibration value. VCC = 3.0V. 6.0 5.7 I CURRENTSOURCE [µA] 5.4 5.1 4.8 4.5 4.2 3.9 -40°C 25 °C 85°C 105°C 3.6 3.3 3.0 0 2 4 6 8 10 12 14 16 CALIB[3..0] Figure 38-57. Voltage scaler INL vs. SCALEFAC. T = 25C, VCC = 3.0V. 0.30 0.25 INL [LSB] 0.20 0.15 0.10 0.05 25°C 0.00 -0.05 -0.10 0 7 14 21 28 35 42 49 56 63 SCALEFAC 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U 38.1.6 Internal 1.0V reference Characteristics Figure 38-58. ADC/DAC Internal 1.0V reference vs. temperature. 3.6 V 3.3 V 3.0 V 2.7 V 1.8 V 1.6 V 1.005 1.002 0.999 Bandgap Voltage [V] 0.996 0.993 0.990 0.987 0.984 0.981 0.978 0.975 -40 -25 -10 5 20 35 50 65 80 95 110 Temperature [°C] 38.1.7 BOD Characteristics Figure 38-59. BOD thresholds vs. temperature. BOD level = 1.6V. 1.650 Rising Vcc 1.645 1.640 Falling Vcc 1.635 V BOT [V] 1.630 1.625 1.620 1.615 1.
ATxmega128A1U/ATxmega64A1U Figure 38-60. BOD thresholds vs. temperature. BOD level = 3.0V. 3.090 Rising Vcc 3.075 3.060 V BOT [V] 3.045 Falling Vcc 3.030 3.015 3.000 2.985 2.970 2.955 -40 -25 -10 5 20 35 50 65 80 95 110 Temperature [°C] 38.1.8 External Reset Characteristics Figure 38-61. Minimum Reset pin pulse width vs. VCC. 124 116 108 t RST [ns] 100 105°C 92 25°C -40°C 84 76 68 85°C 60 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-62. Reset pin pull-up resistor current vs. reset pin voltage. VCC = 1.8V. 80 70 I RESET [µA] 60 50 40 30 20 -40°C 10 85°C 105°C 25°C 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 VRESET [V] Figure 38-63. Reset pin pull-up resistor current vs. reset pin voltage. VCC = 3.0V. 135 120 105 I RESET [µA] 90 75 60 45 -40°C 30 25°C 15 85°C 105°C 0 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 VRESET [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-64. Reset pin pull-up resistor current vs. reset pin voltage. VCC = 3.3V. 160 140 120 I RESET [µA] 100 80 60 40 -40°C 25°C 20 85°C 105°C 0 0.00 0.35 0.70 1.05 1.40 1.75 2.10 2.45 2.80 3.15 3.50 VRESET [V] Figure 38-65. Reset pin input threshold voltage vs. VCC. VIH - Reset pin read as “1”. V threshold [V] 2.20 -40°C 2.05 25°C 1.90 85°C 105°C 1.75 1.60 1.45 1.30 1.15 1.00 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.
ATxmega128A1U/ATxmega64A1U Figure 38-66. Reset pin input threshold voltage vs. VCC. VIL - Reset pin read as “0”. 1.70 -40°C 25°C 1.55 85°C 105°C 1.40 V threshold [V] 1.25 1.10 0.95 0.80 0.65 0.50 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 38.1.9 Power-on Reset Characteristics Figure 38-67. Power-on reset current consumption vs. VCC. BOD level = 3.0V, enabled in continuous mode. 1500 -40°C 1350 25°C 85°C 105 °C 1200 ICC [µA] 1050 900 750 600 450 300 150 0 0 0.3 0.6 0.9 1.
ATxmega128A1U/ATxmega64A1U Figure 38-68. Power-on reset current consumption vs. VCC. BOD level = 3.0V, enabled in sampled mode. 1350 -40°C 1200 25°C 85°C 105 °C 1050 ICC [µA] 900 750 600 450 300 150 0 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 VCC [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U 38.1.10 Oscillator Characteristics 38.1.10.1 Ultra Low-Power internal oscillator Figure 38-69. Ultra Low-Power internal oscillator frequency vs. temperature. 30.0 29.6 Frequency [kHz] 29.2 28.8 28.4 28.0 3.3 V 3.0 V 2.7 V 2.2 V 1.8 V 27.6 27.2 26.8 -40 -25 -10 5 20 35 50 65 80 95 110 Temperature [°C] 38.1.10.2 32.768kHz Internal Oscillator Figure 38-70. 32.768kHz internal oscillator frequency vs. temperature. 32.900 1.8 V 2.2 V 2.7 V 3.3 V 3.0 V 32.
ATxmega128A1U/ATxmega64A1U Figure 38-71. 32.768kHz internal oscillator frequency vs. calibration value. VCC = 3.0V, T = 25°C. 50 47 Frequency [kHz] 44 41 38 35 32 29 26 23 20 0 30 60 90 120 150 180 210 240 270 RC32KCAL[7..0] 38.1.10.3 2MHz Internal Oscillator Figure 38-72. 2MHz internal oscillator frequency vs. temperature. DFLL disabled. 2.07 2.06 Frequency [MHz] 2.05 2.04 2.03 2.02 2.01 3.3 V 3.0 V 2.7 V 2.2 V 1.8 V 2.00 1.99 1.
ATxmega128A1U/ATxmega64A1U Figure 38-73. 2MHz internal oscillator frequency vs. temperature. DFLL enabled. 2.0100 1.8 V 2.2 V 2.7 V 2.0075 Frequency [MHz] 2.0050 3.3 V 3.0 V 2.0025 2.0000 1.9975 1.9950 1.9925 1.9900 -40 -25 -10 5 20 35 50 65 80 95 110 Temperature [°C] Figure 38-74. 2MHz internal oscillator CALA calibration step size. VCC = 3V. 0.24 Frequency step size [%] 0.23 0.21 0.20 0.18 0.17 105 °C -40 °C 85 °C 25 °C 0.15 0.14 0.
ATxmega128A1U/ATxmega64A1U 38.1.10.4 32MHz Internal Oscillator Figure 38-75. 32MHz internal oscillator frequency vs. temperature. DFLL disabled. 34.2 33.9 Frequency [MHz] 33.6 33.3 33.0 32.7 32.4 32.1 3.3 V 3.0 V 2.7 V 2.2 V 1.8 V 31.8 31.5 31.2 -40 -25 -10 5 20 35 50 65 80 95 110 Temperature [°C] Figure 38-76. 32MHz internal oscillator frequency vs. temperature. DFLL enabled, from the 32.768kHz internal oscillator. 32.10 32.05 3.3 V Frequency [MHz] 32.00 1.8 V 2.2 V 31.95 3.0 V 31.
ATxmega128A1U/ATxmega64A1U Figure 38-77. 32MHz internal oscillator CALA calibration step size. VCC = 3.0V. 0.30 Frequency Step size [%] 0.28 0.26 0.24 0.22 0.20 85°C 0.18 105°C 25°C -40°C 0.16 0.14 0.12 0.10 0 15 30 45 60 75 90 105 120 135 CALA Figure 38-78. 32MHz internal oscillator frequency vs. CALB calibration value. VCC = 3.0V, DFLL disabled.
ATxmega128A1U/ATxmega64A1U 38.1.10.5 32MHz internal oscillator calibrated to 48MHz Figure 38-79. 48MHz internal oscillator frequency vs. temperature. DFLL disabled. 51.50 51.00 Frequency [MHz] 50.50 50.00 49.50 49.00 48.50 3.3 V 3.0 V 2.7 V 2.2 V 1.8 V 48.00 47.50 47.00 46.50 -40 -25 -10 5 20 35 50 65 80 95 110 Temperature [°C] Figure 38-80. 48MHz internal oscillator frequency vs. temperature. DFLL enabled, from the 32.768kHz internal oscillator. 48.16 1.8 V 2.2 V 2.7 V 3.0 V 3.3 V 48.
ATxmega128A1U/ATxmega64A1U Figure 38-81. 32MHz internal oscillator CALA calibration step size. Using 48MHz calibration value from signature row, VCC = 3.0V. 0.30 Frequency Step size [%] 0.28 0.26 0.24 0.22 0.20 105°C 85°C 25°C -40°C 0.18 0.16 0.14 0.12 0.10 0 15 30 45 60 75 90 105 120 135 CALA 38.1.11 PDI characteristics Figure 38-82. Maximum PDI frequency vs. VCC. 34 -40°C 25 °C 85 °C 105°C 31 28 f MAX [MHz] 25 22 19 16 13 10 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.
ATxmega128A1U/ATxmega64A1U 38.2 ATxmega128A1U 38.2.1 Current consumption 38.2.1.1 Active mode supply current Figure 38-83. Active supply current vs. frequency. fSYS = 0 - 1MHz external clock, T = 25°C. ICC [µA] 800 3.3V 700 3.0V 600 2.7V 500 2.2V 400 1.8V 300 200 100 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Frequency [MHz] Figure 38-84. Active supply current vs. frequency. fSYS = 1 - 32MHz external clock, T = 25°C. 18 3.3 V 16 3.0 V 14 2.7 V ICC [mA] 12 10 2.
ATxmega128A1U/ATxmega64A1U Figure 38-85. Active mode supply current vs. VCC. fSYS = 32.768kHz internal oscillator. 175 -40°C 160 25°C 85°C 105°C 145 I CC [µA] 130 115 100 85 70 55 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-86. Active mode supply current vs. VCC. fSYS = 1MHz external clock. 900 -40°C 25°C 85°C 105°C 830 760 I CC [µA] 690 620 550 480 410 340 270 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-87. Active mode supply current vs. VCC. fSYS = 2MHz internal oscillator. 1800 -40 °C 25 °C 85 °C 105 °C 1650 1500 I CC [µA] 1350 1200 1050 900 750 600 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-88. Active mode supply current vs. VCC. fSYS = 32MHz internal oscillator prescaled to 8MHz. 7.5 -40 °C 25 °C 85 °C 105 °C 6.9 6.3 I CC [mA] 5.7 5.1 4.5 3.9 3.3 2.7 2.1 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.
ATxmega128A1U/ATxmega64A1U Figure 38-89. Active mode supply current vs. VCC. fSYS = 32MHz internal oscillator. 21 -40 °C 20 25°C 85°C 105°C 19 I CC [mA] 18 17 16 15 14 13 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 VCC [V] 38.2.1.2 Idle mode supply current Figure 38-90. Idle mode supply current vs. frequency. fSYS = 0 - 1MHz external clock, T = 25°C. ICC [µA] 250 225 3.3 V 200 3.0 V 175 2.7 V 150 2.2 V 125 1.8 V 100 75 50 25 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.
ATxmega128A1U/ATxmega64A1U Figure 38-91. Idle mode supply current vs. frequency. fSYS = 1 - 32MHz external clock, T = 25°C. 8 3.3 V 7 3.0 V ICC [mA] 6 2.7 V 5 4 2.2 V 3 2 1.8 V 1 0 0 4 8 12 16 20 24 28 32 Frequency [MHz] Figure 38-92. Idle mode supply current vs. VCC. fSYS = 32.768kHz internal oscillator. 41.5 40.0 105°C 38.5 I CC [µA] 37.0 85 °C -40°C 35.5 25°C 34.0 32.5 31.0 29.5 28.0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-93. Idle mode supply current vs. VCC. fSYS = 1MHz external clock. 270 105 °C 85 °C 25°C -40°C 250 230 I CC [µA] 210 190 170 150 130 110 90 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-94. Idle mode supply current vs. VCC. fSYS = 2MHz internal oscillator. 600 -40°C 25°C 85°C 105°C 550 I CC [µA] 500 450 400 350 300 250 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-95. Idle mode supply current vs. VCC. fSYS = 32MHz internal oscillator prescaled to 8MHz. 3100 -40°C 25°C 85°C 105°C 2800 I CC [µA] 2500 2200 1900 1600 1300 1000 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-96. Idle mode current vs. VCC. fSYS = 32MHz internal oscillator. 8650 -40°C 25°C 85°C 105°C 8300 7950 I CC [µA] 7600 7250 6900 6550 6200 5850 5500 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.
ATxmega128A1U/ATxmega64A1U 38.2.1.3 Power-down mode supply current Figure 38-97. Power-down mode supply current vs. Temperature. All functions disabled. 6.00 3.3 V 3.0 V 2.7 V 2.2 V 1.8 V 5.25 4.50 I CC [µA] 3.75 3.00 2.25 1.50 0.75 0.00 -40 -25 -10 5 20 35 50 65 80 95 110 Temperature [°C] Figure 38-98. Power-down mode supply current vs. Temperature. Sampled BOD with Watchdog Timer running on ULP oscillator. 6.05 3.3 V 3.0 V 2.7 V 2.2 V 1.8 V 5.30 I CC [µA] 4.55 3.80 3.05 2.30 1.55 0.
ATxmega128A1U/ATxmega64A1U 38.2.1.4 Power-save mode supply current Figure 38-99. Power-save mode supply current vs. VCC. Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC. 0.90 0.85 Normal mode ICC [µA] 0.80 0.75 0.70 0.65 Low-power mode 0.60 0.55 0.50 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 VCC [V] 38.2.1.5 Standby mode supply current Figure 38-100. Standby supply current vs. VCC. Standby, fSYS = 1MHz. 12.5 105°C 11.5 10.5 ICC [µA] 9.5 85°C 8.
ATxmega128A1U/ATxmega64A1U Figure 38-101. Standby supply current vs. VCC. 25°C, running from different crystal oscillators. 500 16MHz 12MHz 450 ICC [µA] 400 350 8MHz 2MHz 300 250 0.454MHz 200 150 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 VCC [V] 38.2.2 I/O Pin Characteristics 38.2.2.1 Pull-up Figure 38-102. I/O pin pull-up resistor current vs. pin voltage. VCC = 1.8V. 80 70 I pin [µA] 60 50 40 30 -40°C 25°C 85°C 105°C 20 10 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.
ATxmega128A1U/ATxmega64A1U Figure 38-103. I/O pin pull-up resistor current vs. pin voltage. VCC = 3.0V. 120 105 90 I pin [µA] 75 60 45 30 -40°C 25 °C 85 °C 105°C 15 0 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 VPIN [V] Figure 38-104. I/O pin pull-up resistor current vs. pin voltage. VCC = 3.3V. 140 120 I pin [µA] 100 80 60 40 -40°C 25 °C 85 °C 105°C 20 0 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 VPIN [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U 38.2.2.2 Output Voltage vs. Sink/Source Current Figure 38-105.I/O pin output voltage vs. source current. VCC = 1.8V. 1.85 1.70 1.55 V PIN [V] 1.40 1.25 1.10 0.95 -40°C 0.80 25°C 85°C 105°C 0.65 0.50 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 -9 -6 -3 0 IPIN [mA] Figure 38-106.I/O pin output voltage vs. source current. VCC = 3.0V. 3.2 2.9 2.6 V PIN [V] 2.3 2.0 1.7 1.4 -40°C 1.1 105°C 25°C 0.8 85°C 0.
ATxmega128A1U/ATxmega64A1U Figure 38-107.I/O pin output voltage vs. source current. VCC = 3.3V. 3.5 3.2 2.9 2.6 VPIN [V] 2.3 2.0 -40°C 1.7 25°C 1.4 1.1 85°C 0.8 105°C 0.5 -30 -27 -24 -21 -18 -15 -12 -9 -6 -3 0 IPIN [mA] Figure 38-108.I/O pin output voltage vs. source current. 3.8 3.6V 3.4 3.3V VPIN [V] 3.0 2.7V 2.6 2.2 1.8V 1.8 1.4 1.0 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 IPIN [mA] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-109.I/O pin output voltage vs. sink current. VCC = 1.8V. 1.6 105°C 1.4 1.2 85°C VPIN [V] 1.0 0.8 25°C -40°C 0.6 0.4 0.2 0.0 0 2 4 6 8 10 12 14 16 IPIN [mA] Figure 38-110.I/O pin output voltage vs. sink current. VCC = 3.0V. 1.20 1.05 105°C 85°C 0.90 25°C -40°C V PIN [V] 0.75 0.60 0.45 0.30 0.15 0.00 0 3 6 9 12 15 18 21 24 27 30 IPIN [mA] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-111.I/O pin output voltage vs. sink current. VCC = 3.3V. 1.08 105°C 85°C 25°C -40°C 0.96 0.84 V PIN [V] 0.72 0.60 0.48 0.36 0.24 0.12 0.00 0 4 8 12 16 20 24 28 32 IPIN [mA] Figure 38-112.I/O pin output voltage vs. sink current. 1.50 1.8V 1.35 1.20 VPIN [V] 1.05 0.90 2.7V 3.3V 3.6V 0.75 0.60 0.45 0.30 0.15 0.00 5 7 9 11 13 15 17 19 21 23 25 IPIN [mA] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U 38.2.2.3 Thresholds and Hysteresis Figure 38-113.I/O pin input threshold voltage vs. VCC. T = 25°C. 1.85 VIH 1.70 VIL Vthreshold [V] 1.55 1.40 1.25 1.10 0.95 0.80 0.65 0.50 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-114.I/O pin input threshold voltage vs. VCC. VIH I/O pin read as “1”. 1.88 -40°C 25°C 85°C 105°C 1.76 Vthreshold[V] 1.64 1.52 1.4 1.28 1.16 1.04 0.92 0.8 1.6 1.85 2.1 2.35 2.6 2.85 3.1 3.35 3.
ATxmega128A1U/ATxmega64A1U Figure 38-115.I/O pin input threshold voltage vs. VCC. VIL I/O pin read as “0”. 1.70 105°C 85 °C 25 °C -40°C 1.55 V threshold [V] 1.40 1.25 1.10 0.95 0.80 0.65 0.50 1.6 1.85 2.1 2.35 2.6 2.85 3.1 3.35 3.6 VCC [V] Figure 38-116.I/O pin input hysteresis vs. VCC. 0.36 -40 °C 0.33 Vthreshold [V] 0.3 0.27 25°C 0.24 0.21 85°C 0.18 0.15 105°C 0.12 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U 38.2.3 ADC Characteristics Figure 38-117.INL error vs. external VREF. T = 25C, VCC = 3.6V, external reference. 1.6 1.5 Single-ended unsigned mode INL [LSB] 1.4 1.3 Differential mode 1.2 1.1 1 Single-ended signed mode 0.9 0.8 0.7 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 1850 2000 VREF [V] Figure 38-118.INL error vs. sample rate. T = 25C, VCC = 3.6V, VREF = 2.0V external. 1.17 1.14 Differential mode 1.11 Single-ended Unsigned mode INL [LSB] 1.08 1.05 1.
ATxmega128A1U/ATxmega64A1U Figure 38-119.INL error vs. input code 2 1.5 INL [LSB] 1 0.5 0 -0.5 -1 -1.5 -2 0 512 1024 1536 2048 2560 3072 3584 4096 ADC input code Figure 38-120.DNL error vs. external VREF. T = 25C, VCC = 3.6V, external reference. 1.3 1.2 Single-ended unsigned mode 1.1 DNL [LSB] 1 0.9 0.8 0.7 0.6 Differential mode 0.5 0.4 Single-ended signed mode 0.3 0.2 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 VREF [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-121.DNL error vs. sample rate. T = 25C, VCC = 3.6V, VREF = 2.0V external. 0.53 0.51 Differential mode DNL [LSB] 0.49 0.47 Single-ended signed mode 0.45 0.43 0.41 0.39 Single-ended unsigned mode 0.37 0.35 500 650 800 950 1100 1250 1400 1550 1700 1850 2000 ADC sample rate [ksps] Figure 38-122.DNL error vs. input code. 0.7 0.6 DNL [LSB] 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.
ATxmega128A1U/ATxmega64A1U Figure 38-123.Gain error vs. VREF. T = 25C, VCC = 3.6V, ADC sampling speed = 500ksps. 10 9 Single-ended signed mode Gain Error [mV] 8 7 6 5 Single-ended unsigned mode 4 3 2 Differential mode 1 0 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 VREF [V] Figure 38-124.Gain error vs. VCC. T = 25C, VREF = external 1.0V, ADC sampling speed = 500ksps. 9 8 Single-ended signed mode Gain error [mV] 7 6 5 4 Single-ended unsigned mode 3 2 Differential mode 1 0 1.6 1.
ATxmega128A1U/ATxmega64A1U Figure 38-125.ADC Offset error vs. VREF. T = 25C, VCC = 3.6V, ADC sampling speed = 500ksps. -0.8 -0.85 Offset [mV] -0.9 -0.95 -1 -1.05 Differential mode -1.1 -1.15 -1.2 -1.25 -1.3 -1.35 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 VREF [V] Figure 38-126.Gain error vs. temperature. VCC = 3.0V, VREF = external 2.0V.
ATxmega128A1U/ATxmega64A1U Figure 38-127.ADC Offset vs. VCC. T = 25C, VREF = external 1.0V, ADC sampling speed = 500ksps. -0.2 -0.25 Offset [mV] -0.3 -0.35 Differential mode -0.4 -0.45 -0.5 -0.55 -0.6 -0.65 -0.7 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-128.Noise vs. VREF. T = 25C, VCC = 3.6V, ADC sampling speed = 500ksps. 0.47 0.46 Differential Noise [mV RMS] 0.45 0.44 0.43 0.42 0.41 0.4 0.39 0.38 0.37 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.
ATxmega128A1U/ATxmega64A1U Figure 38-129.Noise vs. VCC. T = 25C, VREF = external 1.0V, ADC sampling speed = 500ksps. 0.42 Noise [mV RMS] 0.41 Differential 0.4 0.39 0.38 0.37 0.36 0.35 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 38.2.4 DAC Characteristics Figure 38-130.DAC INL error vs. VREF. VCC = 3.6V, external reference, room temperature. 1.9 1.8 INL [LSB] 1.7 1.6 1.5 1.4 1.3 1.2 1.1 25°C 1 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.
ATxmega128A1U/ATxmega64A1U Figure 38-131.DAC DNL error vs. VREF. VCC = 3.6V, external reference, room temperature. 1.35 1.25 DNL [LSB] 1.15 1.05 0.95 0.85 0.75 0.65 25°C 0.55 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 VREF [V] Figure 38-132.DAC noise vs. temperature. VCC = 3.0V, VREF = 2.4V . 0.183 0.181 Noise [mV RMS] 0.179 0.177 0.175 0.173 0.171 0.169 0.167 0.165 -45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 Temperature [ºC] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U 38.2.5 Analog Comparator Characteristics Figure 38-133.Analog comparator hysteresis vs. VCC. High-speed, small hysteresis. 53 105° C 85 °C 25 °C -40°C 51 49 V HYST [mV] 47 45 43 41 39 37 35 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-134.Analog comparator hysteresis vs. VCC. Low power, small hysteresis. 37.0 35.5 105°C 85 °C 34.0 VHYST [mV] 32.5 31.0 25 °C 29.5 -40°C 28.0 26.5 25.0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.
ATxmega128A1U/ATxmega64A1U Figure 38-135.Analog comparator hysteresis vs. VCC. High-speed mode, large hysteresis. 53 105° C 85 °C 25 °C -40°C 51 49 V HYST [mV] 47 45 43 41 39 37 35 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-136.Analog comparator hysteresis vs. VCC. Low power, large hysteresis. 77 105°C 85°C 74 71 VHYST [mV] 68 65 25°C 62 59 -40°C 56 53 50 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-137.Analog comparator current source vs. calibration value. Temperature = 25C. 8 7 I [µA] 6 5 3.3V 3.0V 2.7V 4 3 2.2V 1.8V 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CALIB[3..0] Figure 38-138.Analog comparator current source vs. calibration value. VCC = 3.0V. 6.0 5.7 I CURRENTSOURCE [µA] 5.4 5.1 4.8 4.5 4.2 3.9 -40°C 25 °C 85°C 105°C 3.6 3.3 3.0 0 2 4 6 8 10 12 14 16 CALIB[3..0] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-139.Voltage scaler INL vs. SCALEFAC. T = 25C, VCC = 3.0V. 0.30 0.25 INL [LSB] 0.20 0.15 0.10 0.05 25°C 0.00 -0.05 -0.10 0 7 14 21 28 35 42 49 56 63 SCALEFAC 38.2.6 Internal 1.0V reference Characteristics Figure 38-140. ADC/DAC Internal 1.0V reference vs. temperature. 3.6 V 3.3 V 3.0 V 2.7 V 1.8 V 1.6 V 1.005 1.002 0.999 Bandgap Voltage [V] 0.996 0.993 0.990 0.987 0.984 0.981 0.978 0.
ATxmega128A1U/ATxmega64A1U 38.2.7 BOD Characteristics Figure 38-141.BOD thresholds vs. temperature. BOD level = 1.6V. 1.650 Rising Vcc 1.645 1.640 Falling Vcc 1.635 V BOT [V] 1.630 1.625 1.620 1.615 1.610 1.605 1.600 -40 -25 -10 5 20 35 50 65 80 95 110 Temperature [°C] Figure 38-142.BOD thresholds vs. temperature. BOD level = 3.0V. 3.090 Rising Vcc 3.075 3.060 V BOT [V] 3.045 Falling Vcc 3.030 3.015 3.000 2.985 2.970 2.
ATxmega128A1U/ATxmega64A1U 38.2.8 External Reset Characteristics Figure 38-143.Minimum Reset pin pulse width vs. VCC. 124 116 108 t RST [ns] 100 105°C 92 25°C -40°C 84 76 68 85°C 60 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-144.Reset pin pull-up resistor current vs. reset pin voltage. VCC = 1.8V. 80 70 I RESET [µA] 60 50 40 30 20 -40°C 10 85°C 105°C 25°C 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 VRESET [V] 2018 Microchip Technology Inc.
ATxmega128A1U/ATxmega64A1U Figure 38-145.Reset pin pull-up resistor current vs. reset pin voltage. VCC = 3.0V. 135 120 105 I RESET [µA] 90 75 60 45 -40°C 30 25°C 15 85°C 105°C 0 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 VRESET [V] Figure 38-146.Reset pin pull-up resistor current vs. reset pin voltage. VCC = 3.3V. 160 140 120 I RESET [µA] 100 80 60 40 -40°C 25°C 20 85°C 105°C 0 0.00 0.35 0.70 1.05 1.40 1.75 2.10 2.45 2.80 3.15 3.
ATxmega128A1U/ATxmega64A1U Figure 38-147.Reset pin input threshold voltage vs. VCC. VIH - Reset pin read as “1”. V threshold [V] 2.20 -40°C 2.05 25°C 1.90 85°C 105°C 1.75 1.60 1.45 1.30 1.15 1.00 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VCC [V] Figure 38-148.Reset pin input threshold voltage vs. VCC. VIL - Reset pin read as “0”. 1.70 -40°C 25°C 1.55 85°C 105°C V threshold [V] 1.40 1.25 1.10 0.95 0.80 0.65 0.50 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.
ATxmega128A1U/ATxmega64A1U 38.2.9 Power-on Reset Characteristics Figure 38-149.Power-on reset current consumption vs. VCC. BOD level = 3.0V, enabled in continuous mode. 1500 -40°C 1350 25°C 85°C 105 °C 1200 ICC [µA] 1050 900 750 600 450 300 150 0 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 VCC [V] Figure 38-150.Power-on reset current consumption vs. VCC. BOD level = 3.0V, enabled in sampled mode. 1350 -40°C 1200 25°C 85°C 105 °C 1050 ICC [µA] 900 750 600 450 300 150 0 0 0.3 0.6 0.
ATxmega128A1U/ATxmega64A1U 38.2.10 Oscillator Characteristics 38.2.10.1 Ultra Low-Power internal oscillator Figure 38-151.Ultra Low-Power internal oscillator frequency vs. temperature. 30.0 29.6 Frequency [kHz] 29.2 28.8 28.4 28.0 3.3 V 3.0 V 2.7 V 2.2 V 1.8 V 27.6 27.2 26.8 -40 -25 -10 5 20 35 50 65 80 95 110 Temperature [°C] 38.2.10.2 32.768kHz Internal Oscillator Figure 38-152. 32.768kHz internal oscillator frequency vs. temperature. 32.900 1.8 V 2.2 V 2.7 V 3.3 V 3.0 V 32.
ATxmega128A1U/ATxmega64A1U Figure 38-153. 32.768kHz internal oscillator frequency vs. calibration value. VCC = 3.0V, T = 25°C. 50 47 Frequency [kHz] 44 41 38 35 32 29 26 23 20 0 30 60 90 120 150 180 210 240 270 RC32KCAL[7..0] 38.2.10.3 2MHz Internal Oscillator Figure 38-154. 2MHz internal oscillator frequency vs. temperature. DFLL disabled. 2.07 2.06 Frequency [MHz] 2.05 2.04 2.03 2.02 2.01 3.3 V 3.0 V 2.7 V 2.2 V 1.8 V 2.00 1.99 1.
ATxmega128A1U/ATxmega64A1U Figure 38-155. 2MHz internal oscillator frequency vs. temperature. DFLL enabled. 2.0100 1.8 V 2.2 V 2.7 V 2.0075 Frequency [MHz] 2.0050 3.3 V 3.0 V 2.0025 2.0000 1.9975 1.9950 1.9925 1.9900 -40 -25 -10 5 20 35 50 65 80 95 110 Temperature [°C] Figure 38-156. 2MHz internal oscillator CALA calibration step size. VCC = 3V. 0.24 Frequency step size [%] 0.23 0.21 0.20 0.18 0.17 105 °C -40 °C 85 °C 25 °C 0.15 0.14 0.
ATxmega128A1U/ATxmega64A1U 38.2.10.4 32MHz Internal Oscillator Figure 38-157. 32MHz internal oscillator frequency vs. temperature. DFLL disabled. 34.2 33.9 Frequency [MHz] 33.6 33.3 33.0 32.7 32.4 32.1 3.3 V 3.0 V 2.7 V 2.2 V 1.8 V 31.8 31.5 31.2 -40 -25 -10 5 20 35 50 65 80 95 110 Temperature [°C] Figure 38-158. 32MHz internal oscillator frequency vs. temperature. DFLL enabled, from the 32.768kHz internal oscillator. 32.10 32.05 3.3 V Frequency [MHz] 32.00 1.8 V 2.2 V 31.95 3.
ATxmega128A1U/ATxmega64A1U Figure 38-159. 32MHz internal oscillator CALA calibration step size. VCC = 3.0V. 0.30 Frequency Step size [%] 0.28 0.26 0.24 0.22 0.20 85°C 0.18 105°C 25°C -40°C 0.16 0.14 0.12 0.10 0 15 30 45 60 75 90 105 120 135 CALA Figure 38-160. 32MHz internal oscillator frequency vs. CALB calibration value. VCC = 3.0V, DFLL disabled.
ATxmega128A1U/ATxmega64A1U 38.2.10.5 32MHz internal oscillator calibrated to 48MHz Figure 38-161. 48MHz internal oscillator frequency vs. temperature. DFLL disabled. 51.50 51.00 Frequency [MHz] 50.50 50.00 49.50 49.00 48.50 3.3 V 3.0 V 2.7 V 2.2 V 1.8 V 48.00 47.50 47.00 46.50 -40 -25 -10 5 20 35 50 65 80 95 110 Temperature [°C] Figure 38-162. 48MHz internal oscillator frequency vs. temperature. DFLL enabled, from the 32.768kHz internal oscillator. 48.16 1.8 V 2.2 V 2.7 V 3.0 V 3.3 V 48.
ATxmega128A1U/ATxmega64A1U Figure 38-163. 32MHz internal oscillator CALA calibration step size. Using 48MHz calibration value from signature row, VCC = 3.0V. 0.30 Frequency Step size [%] 0.28 0.26 0.24 0.22 0.20 105°C 85°C 25°C -40°C 0.18 0.16 0.14 0.12 0.10 0 15 30 45 60 75 90 105 120 135 CALA 38.2.11 PDI characteristics Figure 38-164. Maximum PDI frequency vs. VCC. 34 -40°C 25 °C 85 °C 105°C 31 28 f MAX [MHz] 25 22 19 16 13 10 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.
ATxmega128A1U/ATxmega64A1U 39. Errata 39.1 ATxmega64A1U 39.1.1 Rev.
ATxmega128A1U/ATxmega64A1U Problem fix/Workaround Configure PWM and CWCM according to the Table 39-1 on page 210. Table 39-1. PWM and CWCM configuration. PGM CWCM Description 0 0 PGM and CWCM disabled 0 1 PGM enabled 1 0 PGM and CWCM enabled 1 1 PGM enabled 5. AWEX PWM output after fault restarted with wrong values When recovering from fault state, the PWM output will drive wrong values to the port for up to two CLKPER + one CLKPER4 cycles.
ATxmega128A1U/ATxmega64A1U Problem fix/Workaround Align the endpoint configuration table pointer in SRAM to a 16-byte. This workaround is implemented in all USB software and source code delivered from Microchip in the AVR Software Framework. 10. USB Auto ZLP feature is non-functional The Auto ZLP feature is non-functional and can not be used. Problem fix/Workaround None. 11.
ATxmega128A1U/ATxmega64A1U The system clock is visible as clock noise on the output of the DAC. Peak to peak noise is in the range 0.7mV - 1.6mV at 2MHz and 0.05mV to 0.1mV at 32MHz. If external clock is used as system clock, the noise is up to three times higher. Problem fix/Workaround Add external low-pass filter to remove the noise. 18. Internal 1V reference has noise at low temperature The internal 1.0V reference for the ADC and DAC has increased noise at low temperatures.
ATxmega128A1U/ATxmega64A1U 39.2 ATxmega128A1U 39.2.1 Rev.
ATxmega128A1U/ATxmega64A1U Table 39-2. PGM PWM and CWCM configuration. CWCM Description 0 0 PGM and CWCM disabled 0 1 PGM enabled 1 0 PGM and CWCM enabled 1 1 PGM enabled 5. AWEX PWM output after fault restarted with wrong values When recovering from fault state, the PWM output will drive wrong values to the port for up to two CLKPER + one CLKPER4 cycles. Problem fix/Workaround The following seqence can be used in Latched Mode: a. Disable DTI outputs (Write DTICCxEN to 0) b.
ATxmega128A1U/ATxmega64A1U Align the endpoint configuration table pointer in SRAM to a 16-byte. This workaround is implemented in all USB software and source code delivered from Microchip in the AVR Software Framework. 10. USB Auto ZLP feature is non-functional The Auto ZLP feature is non-functional and can not be used. Problem fix/Workaround None. 11.
ATxmega128A1U/ATxmega64A1U 17. DAC clock noise The system clock is visible as clock noise on the output of the DAC. Peak to peak noise is in the range 0.7mV - 1.6mV at 2MHz and 0.05mV to 0.1mV at 32MHz. If external clock is used as system clock, the noise is up to three times higher. Problem fix/Workaround Add external low-pass filter to remove the noise. 18. Internal 1V reference has noise at low temperature The internal 1.0V reference for the ADC and DAC has increased noise at low temperatures.
ATxmega128A1U/ATxmega64A1U 40. Datasheet Revision History Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision. 40.1 Rev. A – 08/2018 1. • Updated the document to Microchip style. • New Microchip document number. Previous version was Atmel document 8285 rev. I. 2. • Updated “Ordering Information” on page 8. • Added ATxmega128A1U-CN and ATxmega128A1U-CNR @ 105C.
ATxmega128A1U/ATxmega64A1U 40.6 8385E – 11/2012 1. Updated the whole contents with an updated template (table tags and paragraph tags). 2. Updated the 100C1 package type on page 8. Ball pitch is 0.80mm instead of 0.88mm. 3. Updated Figure 2-1 on page 9. Pin 14 is VCC and not VDD. 4. Updated Table 7-2 on page 20. ATxmega64A1U has internal SRAM (4K). ATxmega128A1U has internal SRAM (8K). 5. Updated Figure 15-7 on page 39, “Input sensing system overview” . 6.
ATxmega128A1U/ATxmega64A1U The Microchip Web Site Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers.
ATXMEGA128A1U/ATXMEGA64A1U Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature.
Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.
ATxmega128A1U/ATxmega64A1U TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.