Datasheet
SAM3X / SAM3A [DATASHEET]
Atmel-11057C-ATARM-SAM3X-SAM3A-Datasheet_23-Mar-15
220
11.5.6.3 5.4.3. How to Configure the TPIU
This example only concerns the asynchronous trace mode.
Set the TRCENA bit to 1 into the Debug Exception and Monitor Register (0xE000EDFC) to enable the use of
trace and debug blocks.
Write 0x2 into the Selected Pin Protocol Register
Select the Serial Wire Output – NRZ
Write 0x100 into the Formatter and Flush Control Register
Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the baud rate of the
asynchronous output (this can be done automatically by the debugging tool).
11.5.7 IEEE
®
1149.1 JTAG Boundary Scan
IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging technology.
IEEE 1149.1 JTAG Boundary Scan is enabled when FWUP, NRSTB and JTAGSEL are high while TST is tied low
during power-up and must be kept in this state during the whole boundary scan operation. VDDCORE must be
externally supplied between 1.8V and 1.95V. The SAMPLE, EXTEST and BYPASS functions are implemented. In
SWD/JTAG debug mode, the ARM processor responds with a non-JTAG chip ID that identifies the processor. This
is not IEEE 1149.1 JTAG-compliant.
It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port operations. A chip reset
must be performed after JTAGSEL is changed.
A Boundary-scan Descriptor Language (BSDL) file to set up the test is provided on www.atmel.com.
11.5.7.1 JTAG Boundary-scan Register
The Boundary-scan Register (BSR) contains a number of bits which correspond to active pins and associated
control signals.
Each SAM3 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit contains data that can be
forced on the pad. The INPUT bit facilitates the observability of data applied to the pad. The CONTROL bit selects
the direction of the pad.
For more information, please refer to BDSL files available for the SAM3 Series.










