Datasheet

ATmega48PA/88PA/168PA [DATASHEET]
9223F–AVR–04/14
12
7.4.1 The X-Register, Y-Register, and Z-Register
The registers R26...R31 have some added functions to their general purpose usage. These registers are 16-bit address
pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described
in Figure 7-3.
Figure 7-3. The X-, Y-, and Z-registers
In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and
automatic decrement (see Section 32. “Instruction Set Summary” on page 317).
7.5 Stack Pointer
The stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after
interrupts and subroutine calls. Note that the stack is implemented as growing from higher to lower memory locations. The
stack pointer register always points to the top of the stack. The stack pointer points to the data SRAM stack area where the
subroutine and interrupt stacks are located. A stack PUSH command will decrease the stack pointer.
The stack in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are
enabled. Initial stack pointer value equals the last address of the internal SRAM and the stack pointer must be set to point
above start of the SRAM, see Table 8-3 on page 17.
See Table 7-1 for stack pointer details.
The AVR
®
stack pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is
implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only
SPL is needed. In this case, the SPH register will not be present.
15 XH XL 0
X-register 7 0 7 0
R27 (0x1B) R26 (0x1A)
15 YH YL 0
Y-register 7 0 7 0
R29 (0x1D) R28 (0x1C)
15 ZH ZL 0
Z-register 7 0 7 0
R31 (0x1F) R30 (0x1E)
Table 7-1. Stack Pointer Instructions
Instruction Stack pointer Description
PUSH Decremented by 1 Data is pushed onto the stack
CALL
ICALL
RCALL
Decremented by 2 Return address is pushed onto the stack with a subroutine call or interrupt
POP Incremented by 1 Data is popped from the stack
RET
RETI
Incremented by 2
Return address is popped from the stack with return from subroutine or return
from interrupt