Datasheet

The TWINT Flag is set in the following situations:
After the TWI has transmitted a START/REPEATED START condition
After the TWI has transmitted SLA+R/W
After the TWI has transmitted an address byte
After the TWI has lost arbitration
After the TWI has been addressed by own slave address or general call
After the TWI has received a data byte
After a STOP or REPEATED START has been received while still addressed as a Slave
When a bus error has occurred due to an illegal START or STOP condition
23.6. Using the TWI
The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based, the
application software is free to carry on other operations during a TWI byte transfer. Note that the TWI
Interrupt Enable (TWIE) bit in TWCRn together with the Global Interrupt Enable bit in SREG allow the
application to decide whether or not assertion of the TWINT Flag should generate an interrupt request. If
the TWIE bit is cleared, the application must poll the TWINT Flag in order to detect actions on the TWI
bus.
When the TWINT Flag is asserted, the TWI has finished an operation and awaits application response. In
this case, the TWI Status Register (TWSRn) contains a value indicating the current state of the TWI bus.
The application software can then decide how the TWI should behave in the next TWI bus cycle by
manipulating the TWCRn and TWDRn Registers.
The following figure illustrates a simple example of how the application can interface to the TWI
hardware. In this example, a Master wishes to transmit a single data byte to a Slave. A more detailed
explanation follows later in this section. Simple code examples are presented in the table below.
Figure 23-10. Interfacing the Application to the TWI in a Typical Transmission
START SLA+W A Data A STOP
1. Application
writes to TWCR to
initiate
transmission of
START
2.TWINT set.
Status code indicates
START condition sent
4.TWINT set.
Status code indicates
SLA+W sent, ACK
received
6.TWINT set.
Status code indicates
data sent, ACK received
3. Check TWSR to see if START was
sent. Application loads SLA+W into
TWDR, and loads appropriate control
signals into TWCR, making sure that
TWINT is written to one,
and TWSTA is written to zero.
5. Check TWSR to see if SLA+W was
sent and ACK received.
Application loads data into TWDR, and
loads appropriate control signals into
TWCR, making sure that TWINT is
written to one
7. Check TWSR to see if data was sent
and ACK received.
Application loads appropriate control
signals to send STOP into TWCR,
making sure that TWINT is written to one
TWI bus
Indicates
TWINT set
Application
Action
TWI
Hardware
Action
1. The first step in a TWI transmission is to transmit a START condition. This is done by writing a
specific value into TWCRn, instructing the TWI n hardware to transmit a START condition. Which
value to write is described later on. However, it is important that the TWINT bit is set in the value
written. Writing a one to TWINT clears the flag. The TWI n will not start any operation as long as the
Atmel ATmega644A [DATASHEET]
Atmel-42716C-ATmega644A_Datasheet_Complete-10/2016
266