Datasheet
Table Of Contents
- 1. Pin Configurations
- 2. Overview
- 2.1 Block Diagram
- 2.2 Comparison Between ATmega1281/2561 and ATmega640/1280/2560
- 2.3 Pin Descriptions
- 2.3.1 VCC
- 2.3.2 GND
- 2.3.3 Port A (PA7..PA0)
- 2.3.4 Port B (PB7..PB0)
- 2.3.5 Port C (PC7..PC0)
- 2.3.6 Port D (PD7..PD0)
- 2.3.7 Port E (PE7..PE0)
- 2.3.8 Port F (PF7..PF0)
- 2.3.9 Port G (PG5..PG0)
- 2.3.10 Port H (PH7..PH0)
- 2.3.11 Port J (PJ7..PJ0)
- 2.3.12 Port K (PK7..PK0)
- 2.3.13 Port L (PL7..PL0)
- 2.3.14 RESET
- 2.3.15 XTAL1
- 2.3.16 XTAL2
- 2.3.17 AVCC
- 2.3.18 AREF
- 3. Resources
- 4. About Code Examples
- 5. Data Retention
- 6. Capacitive touch sensing
- 7. AVR CPU Core
- 8. AVR Memories
- 9. External Memory Interface
- 10. System Clock and Clock Options
- 10.1 Overview
- 10.2 Clock Systems and their Distribution
- 10.3 Clock Sources
- 10.4 Low Power Crystal Oscillator
- 10.5 Full Swing Crystal Oscillator
- 10.6 Low Frequency Crystal Oscillator
- 10.7 Calibrated Internal RC Oscillator
- 10.8 128kHz Internal Oscillator
- 10.9 External Clock
- 10.10 Clock Output Buffer
- 10.11 Timer/Counter Oscillator
- 10.12 System Clock Prescaler
- 10.13 Register Description
- 11. Power Management and Sleep Modes
- 12. System Control and Reset
- 13. I/O-Ports
- 13.1 Introduction
- 13.2 Ports as General Digital I/O
- 13.3 Alternate Port Functions
- 13.3.1 Alternate Functions of Port A
- 13.3.2 Alternate Functions of Port B
- 13.3.3 Alternate Functions of Port C
- 13.3.4 Alternate Functions of Port D
- 13.3.5 Alternate Functions of Port E
- 13.3.6 Alternate Functions of Port F
- 13.3.7 Alternate Functions of Port G
- 13.3.8 Alternate Functions of Port H
- 13.3.9 Alternate Functions of Port J
- 13.3.10 Alternate Functions of Port K
- 13.3.11 Alternate Functions of Port L
- 13.4 Register Description for I/O-Ports
- 13.4.1 MCUCR – MCU Control Register
- 13.4.2 PORTA – Port A Data Register
- 13.4.3 DDRA – Port A Data Direction Register
- 13.4.4 PINA – Port A Input Pins Address
- 13.4.5 PORTB – Port B Data Register
- 13.4.6 DDRB – Port B Data Direction Register
- 13.4.7 PINB – Port B Input Pins Address
- 13.4.8 PORTC – Port C Data Register
- 13.4.9 DDRC – Port C Data Direction Register
- 13.4.10 PINC– Port C Input Pins Address
- 13.4.11 PORTD – Port D Data Register
- 13.4.12 DDRD – Port D Data Direction Register
- 13.4.13 PIND – Port D Input Pins Address
- 13.4.14 PORTE – Port E Data Register
- 13.4.15 DDRE – Port E Data Direction Register
- 13.4.16 PINE – Port E Input Pins Address
- 13.4.17 PORTF – Port F Data Register
- 13.4.18 DDRF – Port F Data Direction Register
- 13.4.19 PINF – Port F Input Pins Address
- 13.4.20 PORTG – Port G Data Register
- 13.4.21 DDRG – Port G Data Direction Register
- 13.4.22 PING – Port G Input Pins Address
- 13.4.23 PORTH – Port H Data Register
- 13.4.24 DDRH – Port H Data Direction Register
- 13.4.25 PINH – Port H Input Pins Address
- 13.4.26 PORTJ – Port J Data Register
- 13.4.27 DDRJ – Port J Data Direction Register
- 13.4.28 PINJ – Port J Input Pins Address
- 13.4.29 PORTK – Port K Data Register
- 13.4.30 DDRK – Port K Data Direction Register
- 13.4.31 PINK – Port K Input Pins Address
- 13.4.32 PORTL – Port L Data Register
- 13.4.33 DDRL – Port L Data Direction Register
- 13.4.34 PINL – Port L Input Pins Address
- 14. Interrupts
- 15. External Interrupts
- 15.1 Pin Change Interrupt Timing
- 15.2 Register Description
- 15.2.1 EICRA – External Interrupt Control Register A
- 15.2.2 EICRB – External Interrupt Control Register B
- 15.2.3 EIMSK – External Interrupt Mask Register
- 15.2.4 EIFR – External Interrupt Flag Register
- 15.2.5 PCICR – Pin Change Interrupt Control Register
- 15.2.6 PCIFR – Pin Change Interrupt Flag Register
- 15.2.7 PCMSK2 – Pin Change Mask Register 2
- 15.2.8 PCMSK1 – Pin Change Mask Register 1
- 15.2.9 PCMSK0 – Pin Change Mask Register 0
- 16. 8-bit Timer/Counter0 with PWM
- 16.1 Features
- 16.2 Overview
- 16.3 Timer/Counter Clock Sources
- 16.4 Counter Unit
- 16.5 Output Compare Unit
- 16.6 Compare Match Output Unit
- 16.7 Modes of Operation
- 16.8 Timer/Counter Timing Diagrams
- 16.9 Register Description
- 16.9.1 TCCR0A – Timer/Counter Control Register A
- 16.9.2 TCCR0B – Timer/Counter Control Register B
- 16.9.3 TCNT0 – Timer/Counter Register
- 16.9.4 OCR0A – Output Compare Register A
- 16.9.5 OCR0B – Output Compare Register B
- 16.9.6 TIMSK0 – Timer/Counter Interrupt Mask Register
- 16.9.7 TIFR0 – Timer/Counter 0 Interrupt Flag Register
- 17. 16-bit Timer/Counter (Timer/Counter 1, 3, 4, and 5)
- 17.1 Features
- 17.2 Overview
- 17.3 Accessing 16-bit Registers
- 17.4 Timer/Counter Clock Sources
- 17.5 Counter Unit
- 17.6 Input Capture Unit
- 17.7 Output Compare Units
- 17.8 Compare Match Output Unit
- 17.9 Modes of Operation
- 17.10 Timer/Counter Timing Diagrams
- 17.11 Register Description
- 17.11.1 TCCR1A – Timer/Counter 1 Control Register A
- 17.11.2 TCCR3A – Timer/Counter 3 Control Register A
- 17.11.3 TCCR4A – Timer/Counter 4 Control Register A
- 17.11.4 TCCR5A – Timer/Counter 5 Control Register A
- 17.11.5 TCCR1B – Timer/Counter 1 Control Register B
- 17.11.6 TCCR3B – Timer/Counter 3 Control Register B
- 17.11.7 TCCR4B – Timer/Counter 4 Control Register B
- 17.11.8 TCCR5B – Timer/Counter 5 Control Register B
- 17.11.9 TCCR1C – Timer/Counter 1 Control Register C
- 17.11.10 TCCR3C – Timer/Counter 3 Control Register C
- 17.11.11 TCCR4C – Timer/Counter 4 Control Register C
- 17.11.12 TCCR5C – Timer/Counter 5 Control Register C
- 17.11.13 TCNT1H and TCNT1L – Timer/Counter 1
- 17.11.14 TCNT3H and TCNT3L – Timer/Counter 3
- 17.11.15 TCNT4H and TCNT4L –Timer/Counter 4
- 17.11.16 TCNT5H and TCNT5L –Timer/Counter 5
- 17.11.17 OCR1AH and OCR1AL – Output Compare Register 1 A
- 17.11.18 OCR1BH and OCR1BL – Output Compare Register 1 B
- 17.11.19 OCR1CH and OCR1CL – Output Compare Register 1 C
- 17.11.20 OCR3AH and OCR3AL – Output Compare Register 3 A
- 17.11.21 OCR3BH and OCR3BL – Output Compare Register 3 B
- 17.11.22 OCR3CH and OCR3CL – Output Compare Register 3 C
- 17.11.23 OCR4AH and OCR4AL – Output Compare Register 4 A
- 17.11.24 OCR4BH and OCR4BL – Output Compare Register 4 B
- 17.11.25 OCR4CH and OCR4CL –Output Compare Register 4 C
- 17.11.26 OCR5AH and OCR5AL – Output Compare Register 5 A
- 17.11.27 OCR5BH and OCR5BL – Output Compare Register 5 B
- 17.11.28 OCR5CH and OCR5CL –Output Compare Register 5 C
- 17.11.29 ICR1H and ICR1L – Input Capture Register 1
- 17.11.30 ICR3H and ICR3L – Input Capture Register 3
- 17.11.31 ICR4H and ICR4L – Input Capture Register 4
- 17.11.32 ICR5H and ICR5L – Input Capture Register 5
- 17.11.33 TIMSK1 – Timer/Counter 1 Interrupt Mask Register
- 17.11.34 TIMSK3 – Timer/Counter 3 Interrupt Mask Register
- 17.11.35 TIMSK4 – Timer/Counter 4 Interrupt Mask Register
- 17.11.36 TIMSK5 – Timer/Counter 5 Interrupt Mask Register
- 17.11.37 TIFR1 – Timer/Counter1 Interrupt Flag Register
- 17.11.38 TIFR3 – Timer/Counter3 Interrupt Flag Register
- 17.11.39 TIFR4 – Timer/Counter4 Interrupt Flag Register
- 17.11.40 TIFR5 – Timer/Counter5 Interrupt Flag Register
- 18. Timer/Counter 0, 1, 3, 4, and 5 Prescaler
- 19. Output Compare Modulator (OCM1C0A)
- 20. 8-bit Timer/Counter2 with PWM and Asynchronous Operation
- 20.1 Overview
- 20.2 Timer/Counter Clock Sources
- 20.3 Counter Unit
- 20.4 Modes of Operation
- 20.5 Output Compare Unit
- 20.6 Compare Match Output Unit
- 20.7 Timer/Counter Timing Diagrams
- 20.8 Asynchronous Operation of Timer/Counter2
- 20.9 Timer/Counter Prescaler
- 20.10 Register Description
- 20.10.1 TCCR2A –Timer/Counter Control Register A
- 20.10.2 TCCR2B – Timer/Counter Control Register B
- 20.10.3 TCNT2 – Timer/Counter Register
- 20.10.4 OCR2A – Output Compare Register A
- 20.10.5 OCR2B – Output Compare Register B
- 20.10.6 ASSR – Asynchronous Status Register
- 20.10.7 TIMSK2 – Timer/Counter2 Interrupt Mask Register
- 20.10.8 TIFR2 – Timer/Counter2 Interrupt Flag Register
- 20.10.9 GTCCR – General Timer/Counter Control Register
- 21. SPI – Serial Peripheral Interface
- 22. USART
- 22.1 Features
- 22.2 Overview
- 22.3 Clock Generation
- 22.4 Frame Formats
- 22.5 USART Initialization
- 22.6 Data Transmission – The USART Transmitter
- 22.7 Data Reception – The USART Receiver
- 22.8 Asynchronous Data Reception
- 22.9 Multi-processor Communication Mode
- 22.10 Register Description
- 22.11 Examples of Baud Rate Setting
- 23. USART in SPI Mode
- 24. 2-wire Serial Interface
- 25. AC – Analog Comparator
- 26. ADC – Analog to Digital Converter
- 26.1 Features
- 26.2 Operation
- 26.3 Starting a Conversion
- 26.4 Prescaling and Conversion Timing
- 26.5 Changing Channel or Reference Selection
- 26.6 ADC Noise Canceler
- 26.7 ADC Conversion Result
- 26.8 Register Description
- 26.8.1 ADMUX – ADC Multiplexer Selection Register
- 26.8.2 ADCSRB – ADC Control and Status Register B
- 26.8.3 ADCSRA – ADC Control and Status Register A
- 26.8.4 ADCL and ADCH – The ADC Data Register
- 26.8.5 ADCSRB – ADC Control and Status Register B
- 26.8.6 DIDR0 – Digital Input Disable Register 0
- 26.8.7 DIDR2 – Digital Input Disable Register 2
- 27. JTAG Interface and On-chip Debug System
- 28. IEEE 1149.1 (JTAG) Boundary-scan
- 29. Boot Loader Support – Read-While-Write Self-Programming
- 29.1 Features
- 29.2 Application and Boot Loader Flash Sections
- 29.3 Read-While-Write and No Read-While-Write Flash Sections
- 29.4 Boot Loader Lock Bits
- 29.5 Addressing the Flash During Self-Programming
- 29.6 Self-Programming the Flash
- 29.6.1 Performing Page Erase by SPM
- 29.6.2 Filling the Temporary Buffer (Page Loading)
- 29.6.3 Performing a Page Write
- 29.6.4 Using the SPM Interrupt
- 29.6.5 Consideration While Updating BLS
- 29.6.6 Prevent Reading the RWW Section During Self-Programming
- 29.6.7 Setting the Boot Loader Lock Bits by SPM
- 29.6.8 EEPROM Write Prevents Writing to SPMCSR
- 29.6.9 Reading the Fuse and Lock Bits from Software
- 29.6.10 Reading the Signature Row from Software
- 29.6.11 Preventing Flash Corruption
- 29.6.12 Programming Time for Flash when Using SPM
- 29.6.13 Simple Assembly Code Example for a Boot Loader
- 29.6.14 ATmega640 Boot Loader Parameters
- 29.6.15 ATmega1280/1281 Boot Loader Parameters
- 29.6.16 ATmega2560/2561 Boot Loader Parameters
- 29.7 Register Description
- 30. Memory Programming
- 30.1 Program And Data Memory Lock Bits
- 30.2 Fuse Bits
- 30.3 Signature Bytes
- 30.4 Calibration Byte
- 30.5 Page Size
- 30.6 Parallel Programming Parameters, Pin Mapping, and Commands
- 30.7 Parallel Programming
- 30.7.1 Enter Programming Mode
- 30.7.2 Considerations for Efficient Programming
- 30.7.3 Chip Erase
- 30.7.4 Programming the Flash
- 30.7.5 Programming the EEPROM
- 30.7.6 Reading the Flash
- 30.7.7 Reading the EEPROM
- 30.7.8 Programming the Fuse Low Bits
- 30.7.9 Programming the Fuse High Bits
- 30.7.10 Programming the Extended Fuse Bits
- 30.7.11 Programming the Lock Bits
- 30.7.12 Reading the Fuse and Lock Bits
- 30.7.13 Reading the Signature Bytes
- 30.7.14 Reading the Calibration Byte
- 30.7.15 Parallel Programming Characteristics
- 30.8 Serial Downloading
- 30.9 Programming via the JTAG Interface
- 30.9.1 Programming Specific JTAG Instructions
- 30.9.2 AVR_RESET (0xC)
- 30.9.3 PROG_ENABLE (0x4)
- 30.9.4 PROG_COMMANDS (0x5)
- 30.9.5 PROG_PAGELOAD (0x6)
- 30.9.6 PROG_PAGEREAD (0x7)
- 30.9.7 Data Registers
- 30.9.8 Reset Register
- 30.9.9 Programming Enable Register
- 30.9.10 Programming Command Register
- 30.9.11 Flash Data Byte Register
- 30.9.12 Programming Algorithm
- 30.9.13 Entering Programming Mode
- 30.9.14 Leaving Programming Mode
- 30.9.15 Performing Chip Erase
- 30.9.16 Programming the Flash
- 30.9.17 Reading the Flash
- 30.9.18 Programming the EEPROM
- 30.9.19 Reading the EEPROM
- 30.9.20 Programming the Fuses
- 30.9.21 Programming the Lock Bits
- 30.9.22 Reading the Fuses and Lock Bits
- 30.9.23 Reading the Signature Bytes
- 30.9.24 Reading the Calibration Byte
- 31. Electrical Characteristics
- 32. Typical Characteristics
- 32.1 Active Supply Current
- 32.2 Idle Supply Current
- 32.3 Power-down Supply Current
- 32.4 Power-save Supply Current
- 32.5 Standby Supply Current
- 32.6 Pin Pull-up
- 32.7 Pin Driver Strength
- 32.8 Pin Threshold and Hysteresis
- 32.9 BOD Threshold and Analog Comparator Offset
- 32.10 Internal Oscillator Speed
- 32.11 Current Consumption of Peripheral Units
- 32.12 Current Consumption in Reset and Reset Pulsewidth
- 33. Register Summary
- 34. Instruction Set Summary
- 35. Ordering Information
- 36. Packaging Information
- 37. Errata
- 37.1 ATmega640 rev. B
- 37.2 ATmega640 rev. A
- 37.3 ATmega1280 rev. B
- 37.4 ATmega1280 rev. A
- 37.5 ATmega1281 rev. B
- 37.6 ATmega1281 rev. A
- 37.7 ATmega2560 rev. F
- 37.8 ATmega2560 rev. E
- 37.9 ATmega2560 rev. D
- 37.10 ATmega2560 rev. C
- 37.11 ATmega2560 rev. B
- 37.12 ATmega2560 rev. A
- 37.13 ATmega2561 rev. F
- 37.14 ATmega2561 rev. E
- 37.15 ATmega2561 rev. D
- 37.16 ATmega2561 rev. C
- 37.17 ATmega2561 rev. B
- 37.18 ATmega2561 rev. A
- 38. Datasheet Revision History
- 38.1 Rev. 2549Q-02/2014
- 38.2 Rev. 2549P-10/2012
- 38.3 Rev. 2549O-05/2012
- 38.4 Rev. 2549N-05/2011
- 38.5 Rev. 2549M-09/2010
- 38.6 Rev. 2549L-08/07
- 38.7 Rev. 2549K-01/07
- 38.8 Rev. 2549J-09/06
- 38.9 Rev. 2549I-07/06
- 38.10 Rev. 2549H-06/06
- 38.11 Rev. 2549G-06/06
- 38.12 Rev. 2549F-04/06
- 38.13 Rev. 2549E-04/06
- 38.14 Rev. 2549D-12/05
- 38.15 Rev. 2549C-09/05
- 38.16 Rev. 2549B-05/05
- 38.17 Rev. 2549A-03/05

209
ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]
2549Q–AVR–02/2014
UDREn is cleared by writing UDRn. When interrupt-driven data transmission is used, the Data Register Empty
interrupt routine must either write new data to UDRn in order to clear UDREn or disable the Data Register Empty
interrupt, otherwise a new interrupt will occur once the interrupt routine terminates.
The Transmit Complete (TXCn) Flag bit is set one when the entire frame in the Transmit Shift Register has been
shifted out and there are no new data currently present in the transmit buffer. The TXCn Flag bit is automatically
cleared when a transmit complete interrupt is executed, or it can be cleared by writing a one to its bit location. The
TXCn Flag is useful in half-duplex communication interfaces (like the RS-485 standard), where a transmitting appli-
cation must enter receive mode and free the communication bus immediately after completing the transmission.
When the Transmit Compete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the USART Transmit Complete
Interrupt will be executed when the TXCn Flag becomes set (provided that global interrupts are enabled). When
the transmit complete interrupt is used, the interrupt handling routine does not have to clear the TXCn Flag, this is
done automatically when the interrupt is executed.
22.6.4 Parity Generator
The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled (UPMn1 = 1), the
transmitter control logic inserts the parity bit between the last data bit and the first stop bit of the frame that is sent.
22.6.5 Disabling the Transmitter
The disabling of the Transmitter (setting the TXEN to zero) will not become effective until ongoing and pending
transmissions are completed, that is, when the Transmit Shift Register and Transmit Buffer Register do not contain
data to be transmitted. When disabled, the Transmitter will no longer override the TxDn pin.
22.7 Data Reception – The USART Receiver
The USART Receiver is enabled by writing the Receive Enable (RXENn) bit in the UCSRnB Register to one. When
the Receiver is enabled, the normal pin operation of the RxDn pin is overridden by the USART and given the func-
tion as the Receiver’s serial input. The baud rate, mode of operation and frame format must be set up once before
any serial reception can be done. If synchronous operation is used, the clock on the XCKn pin will be used as
transfer clock.
22.7.1 Receiving Frames with 5 to 8 Data Bits
The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start bit will be sampled
at the baud rate or XCKn clock, and shifted into the Receive Shift Register until the first stop bit of a frame is
received. A second stop bit will be ignored by the Receiver. When the first stop bit is received, that is, a complete
serial frame is present in the Receive Shift Register, the contents of the Shift Register will be moved into the
receive buffer. The receive buffer can then be read by reading the UDRn I/O location.
The following code example shows a simple USART receive function based on polling of the Receive Complete
(RXCn) Flag. When using frames with less than eight bits the most significant bits of the data read from the UDRn
will be masked to zero. The USART has to be initialized before the function can be used.