Datasheet
299
ATmega16U4/32U4 [DATASHEET]
Atmel-7766J-USB-ATmega16U4/32U4-Datasheet_04/2016
24.2 Operation
The ADC converts an analog input voltage to a 10-bit digital value through successive approximation. The
minimum value represents GND and the maximum value represents the voltage on the AREF pin minus 1 LSB.
Optionally, AV
CC
or an internal 2.56V reference voltage may be connected to the AREF pin by writing to the
REFSn bits in the ADMUX Register. The internal voltage reference may thus be decoupled by an external
capacitor at the AREF pin to improve noise immunity.
The analog input channel and differential gain are selected by writing to the MUX bits in ADMUX. Any of the
ADC input pins, as well as GND and a fixed bandgap voltage reference, can be selected as single ended inputs
to the ADC. A selection of ADC input pins can be selected as positive and negative inputs to the differential
amplifier.
The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and input channel
selections will not go into effect until ADEN is set. The ADC does not consume power when ADEN is cleared, so
it is recommended to switch off the ADC before entering power saving sleep modes.
The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and ADCL. By default,
the result is presented right adjusted, but can optionally be presented left adjusted by setting the ADLAR bit in
ADMUX.
If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise,
ADCL must be read first, then ADCH, to ensure that the content of the Data Registers belongs to the same
conversion. Once ADCL is read, ADC access to Data Registers is blocked. This means that if ADCL has been
read, and a conversion completes before ADCH is read, neither register is updated and the result from the
conversion is lost. When ADCH is read, ADC access to the ADCH and ADCL Registers is re-enabled.
The ADC has its own interrupt which can be triggered when a conversion completes. The ADC access to the
Data Registers is prohibited between reading of ADCH and ADCL, the interrupt will trigger even if the result is
lost.
24.3 Starting a Conversion
A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC. This bit stays high
as long as the conversion is in progress and will be cleared by hardware when the conversion is completed. If a
different data channel is selected while a conversion is in progress, the ADC will finish the current conversion
before performing the channel change.
Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is enabled by
setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is selected by setting the ADC
Trigger Select bits, ADTS in ADCSRB (See description of the ADTS bits for a list of the trigger sources). When
a positive edge occurs on the selected trigger signal, the ADC prescaler is reset and a conversion is started.
This provides a method of starting conversions at fixed intervals. If the trigger signal is still set when the
conversion completes, a new conversion will not be started. If another positive edge occurs on the trigger signal
during conversion, the edge will be ignored. Note that an interrupt flag will be set even if the specific interrupt is
disabled or the Global Interrupt Enable bit in SREG is cleared. A conversion can thus be triggered without
causing an interrupt. However, the interrupt flag must be cleared in order to trigger a new conversion at the next
interrupt event.