Datasheet

bits. The TOP and BOTTOM signals are used by the Waveform Generator for handling the special cases
of the extreme values in some modes of operation, see Modes of Operation.
A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e., counter
resolution). In addition to the counter resolution, the TOP value defines the period time for waveforms
generated by the Waveform Generator.
Below is a block diagram of the Output Compare unit. The elements of the block diagram that are not
directly a part of the Output Compare unit are gray shaded.
Figure 16-4. Output Compare Unit, Block Diagram
OCFnx (Int.Req.)
= (16-bit Comparator )
OCRnx Buffer (16-bit Register)
OCRnxH Buf. (8-bit)
OCnx
TEMP (8-bit)
DATA BUS (8-bit)
OCRnxL Buf. (8-bit)
TCNTn (16-bit Counter)
TCNTnH (8-bit) TCNTnL (8-bit)
COMnx[1:0]WGMn[3:0]
OCRnx (16-bit Register)
OCRnxH (8-bit) OCRnxL (8-bit)
Waveform Generator
TOP
BOTTOM
Note:  The “n” in the register and bit names indicates the device number (n = 1 for Timer/Counter 1), and
the “x” indicates Output Compare unit (A/B).
The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation (PWM)
modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is
disabled. The double buffering synchronizes the update of the OCR1x Compare Register to either TOP or
BOTTOM of the counting sequence. The synchronization prevents the occurrence of odd-length, non-
symmetrical PWM pulses, thereby making the output glitch-free.
When double buffering is enabled, the CPU has access to the OCR1x Buffer Register. When double
buffering is disabled, the CPU will access the OCR1x directly.
The content of the OCR1x (Buffer or Compare) Register is only changed by a write operation (the Timer/
Counter does not update this register automatically as the TCNT1 and ICR1 Register). Therefore OCR1x
is not read via the high byte temporary register (TEMP). However, it is good practice to read the low byte
first as when accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP
Register since the compare of all 16 bits is done continuously. The high byte (OCR1xH) has to be written
first. When the high byte I/O location is written by the CPU, the TEMP Register will be updated by the
value written. Then when the low byte (OCR1xL) is written to the lower eight bits, the high byte will be
Atmel ATmega16M1/32M1/64M1 [DATASHEET]
Atmel-8209F-ATmega16M1/32M1/64M1_Datasheet_Complete-10/2016
159