Datasheet

ATmega164A/PA/324A/PA/644A/PA/1284/P
2018 Microchip Technology Inc. Data Sheet Complete DS40002070A-page 259
enabled, or if ADSC is written at the same time as the ADC is enabled, will take 25 ADC clock cycles instead of
the normal 13. This first conversion performs initialization of the ADC.
ADSC will read as one as long as a conversion is in progress. When the conversion is complete, it returns to
zero. Writing zero to this bit has no effect.
Bit 5 – ADATE: ADC Auto Trigger Enable
When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a conversion on a
positive edge of the selected trigger signal. The trigger source is selected by setting the ADC Trigger Select bits,
ADTS in ADCSRB.
Bit 4 – ADIF: ADC Interrupt Flag
This bit is set when an ADC conversion completes and the Data Registers are updated. The ADC Conversion
Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set. ADIF is cleared by hardware when
executing the corresponding interrupt handling vector. Alternatively, ADIF is cleared by writing a logical one to
the flag. Beware that if doing a Read-Modify-Write on ADCSRA, a pending interrupt can be disabled. This also
applies if the SBI and CBI instructions are used.
Bit 3 – ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Interrupt is activated.
Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits
These bits determine the division factor between the XTAL frequency and the input clock to the ADC.
23.9.3 ADCL and ADCH – The ADC Data Register
ADLA
R
=
0
Table 23-5. ADC prescaler selections
ADPS2 ADPS1 ADPS0 Division factor
0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128
Bit 151413121110 9 8
(0x79)
ADC9 ADC8 ADCH
(0x78) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL
76543210
Read/Write RRRRRRRR
RRRRRRRR
Initial Value00000000
00000000