Datasheet
Table Of Contents
- 1. Description
- 2. About Code Examples
- 3. AVR CPU Core
- 4. Memories
- 5. System Clock
- 6. Power Management and Sleep Modes
- 7. System Control and Reset
- 8. Interrupts
- 9. I/O-Ports
- 10. External Interrupts
- 11. Timer/Counter3/1/0 Prescalers
- 12. 8-bit Timer/Counter0 with PWM
- 13. 16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3)
- 14. 8-bit Timer/Counter2 with PWM and Asynchronous Operation
- 14.1 Features
- 14.2 Overview
- 14.3 Timer/Counter Clock Sources
- 14.4 Counter Unit
- 14.5 Output Compare Unit
- 14.6 Compare Match Output Unit
- 14.7 Modes of Operation
- 14.8 Timer/Counter Timing Diagrams
- 14.9 8-bit Timer/Counter Register Description
- 14.10 Asynchronous operation of the Timer/Counter2
- 14.11 Timer/Counter2 Prescaler
- 15. Output Compare Modulator - OCM
- 16. Serial Peripheral Interface - SPI
- 17. USART (USART0 and USART1)
- 17.1 Features
- 17.2 Overview
- 17.3 Dual USART
- 17.4 Clock Generation
- 17.5 Serial Frame
- 17.6 USART Initialization
- 17.7 Data Transmission - USART Transmitter
- 17.8 Data Reception - USART Receiver
- 17.9 Asynchronous Data Reception
- 17.10 Multi-processor Communication Mode
- 17.11 USART Register Description
- 17.12 Examples of Baud Rate Setting
- 18. Two-wire Serial Interface
- 19. Controller Area Network - CAN
- 20. Analog Comparator
- 21. Analog to Digital Converter - ADC
- 22. JTAG Interface and On-chip Debug System
- 23. Boundary-scan IEEE 1149.1 (JTAG)
- 24. Boot Loader Support - Read-While-Write Self-Programming
- 25. Memory Programming
- 26. Electrical Characteristics (1)
- 26.1 Absolute Maximum Ratings*
- 26.2 DC Characteristics
- 26.3 External Clock Drive Characteristics
- 26.4 Maximum Speed vs. VCC
- 26.5 Two-wire Serial Interface Characteristics
- 26.6 SPI Timing Characteristics
- 26.7 CAN Physical Layer Characteristics
- 26.8 ADC Characteristics
- 26.9 External Data Memory Characteristics
- 26.10 Parallel Programming Characteristics
- 27. Decoupling Capacitors
- 28. AT90CAN32/64/128 Typical Characteristics
- 28.1 Active Supply Current
- 28.2 Idle Supply Current
- 28.3 Power-down Supply Current
- 28.4 Power-save Supply Current
- 28.5 Standby Supply Current
- 28.6 Pin Pull-up
- 28.7 Pin Driver Strength
- 28.8 Pin Thresholds and Hysteresis
- 28.9 BOD Thresholds and Analog Comparator Offset
- 28.10 Internal Oscillator Speed
- 28.11 Current Consumption of Peripheral Units
- 28.12 Current Consumption in Reset and Reset Pulse Width
- 29. Register Summary
- 30. Instruction Set Summary
- 31. Ordering Information
- 32. Packaging Information
- 33. Errata
- 34. Datasheet Revision History for AT90CAN32/64/128
- 34.1 Changes from 7679G - 03/08 to 7679H - 08/08
- 34.2 Changes from 7679F - 11/07 to 7679G - 03/08
- 34.3 Changes from 7679E - 07/07 to 7679F - 11/07
- 34.4 Changes from 7679D - 02/07 to 7679E - 07/07
- 34.5 Changes from 7679C - 01/07 to 7679D - 02/07
- 34.6 Changes from 7679B - 11/06 to 7679C - 01/07
- 34.7 Changes from 7679A - 10/06 to 7679B - 11/06
- 34.8 Document Creation

220
7679H–CAN–08/08
AT90CAN32/64/128
After a repeated START condition (state 0x10) the Two-wire Serial Interface can access the
same slave again, or a new slave without transmitting a STOP condition. Repeated START
enables the master to switch between slaves, Master Transmitter mode and Master Receiver
mode without losing control of the bus.
Table 18-3. Status Codes for Master Transmitter Mode
Status Code
(TWSR)
Prescaler Bits
are 0
Status of the Two-wire Serial Bus
and Two-wire Serial Interface
Hardware
Application Software Response
Next Action Taken by TWI Hardware
To/from TWDR
To TWCR
STA STO TWINT TWEA
0x08 A START condition has been
transmitted
Load SLA+W X 0 1 X SLA+W will be transmitted;
ACK or NOT ACK will be received
0x10 A repeated START condition has
been transmitted
Load SLA+W or
Load SLA+R
X
X
0
0
1
1
X
X
SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to master receiver mode
0x18 SLA+W has been transmitted;
ACK has been received
Load data byte or
No TWDR action or
No TWDR action or
No TWDR action
0
1
0
1
0
0
1
1
1
1
1
1
X
X
X
X
Data byte will be transmitted and ACK or NOT ACK will be
received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x20 SLA+W has been transmitted;
NOT ACK has been received
Load data byte or
No TWDR action or
No TWDR action or
No TWDR action
0
1
0
1
0
0
1
1
1
1
1
1
X
X
X
X
Data byte will be transmitted and ACK or NOT ACK will be
received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x28 Data byte has been transmitted;
ACK has been received
Load data byte or
No TWDR action or
No TWDR action or
No TWDR action
0
1
0
1
0
0
1
1
1
1
1
1
X
X
X
X
Data byte will be transmitted and ACK or NOT ACK will be
received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x30 Data byte has been transmitted;
NOT ACK has been received
Load data byte or
No TWDR action or
No TWDR action or
No TWDR action
0
1
0
1
0
0
1
1
1
1
1
1
X
X
X
X
Data byte will be transmitted and ACK or NOT ACK will be
received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x38 Arbitration lost in SLA+W or data
bytes
No TWDR action or
No TWDR action
0
1
0
0
1
1
X
X
Two-wire Serial Bus will be released and not addressed
slave mode entered
A START condition will be transmitted when the bus be-
comes free