Datasheet
18
3286P–MICRO–3/10
AT89S8253
Figure 10-4. Timer 2 in Baud Rate Generator Mode
11. Baud Rate Generator
Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (Table
10-2). Note that the baud rates for transmit and receive can be different if Timer 2 is used for the
receiver or transmitter and Timer 1 is used for the other function. Setting RCLK and/or TCLK
puts Timer 2 into its baud rate generator mode, as shown in Figure 10-4.
The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2
causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and
RCAP2L, which are preset by software.
The baud rates in Modes 1 and 3 are determined by Timer 2’s overflow rate according to the fol-
lowing equation.
The Timer can be configured for either timer or counter operation. In most applications, it is con-
figured for timer operation (CP/T2
= 0). The timer operation is different for Timer 2 when it is
used as a baud rate generator. Normally, as a timer, it increments every machine cycle (at 1/12
the oscillator frequency). As a baud rate generator, however, it increments every state time (at
1/2 the oscillator frequency). The baud rate formula is given below.
where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned
integer.
OSC
SMOD1
RCLK
TCLK
Rx
CLOCK
Tx
CLOCK
T2EX PIN
T2 PIN
TR2
CONTROL
"1"
"1"
"1"
"0"
"0"
"0"
TIMER 1 OVERFLOW
NOTE: OSC. FREQ. IS DIVIDED BY 2, NOT 12
TIMER 2
INTERRUPT
2
2
16
16
RCAP2LRCAP2H
TH2 TL2
C/T2 = 0
C/T2 = 1
EXF2
CONTROL
TRANSITION
DETECTOR
EXEN2
÷
÷
÷
÷
Modes 1 and 3 Baud Rates
Timer 2 Overflow Rate
16
----------------------------------------------------------- -=
Modes 1 and 3
Baud Rate
---------------------------------------
Oscillator Frequency
32 65536 RCAP2H,RCAP2L()–[]×
-----------------------------------------------------------------------------------------------=