Datasheet
2015 Microchip Technology Inc. DS20005119G-page 7
SST26VF064B / SST26VF064BA
4.0 DEVICE OPERATION
SST26VF064B/064BA support both Serial Peripheral
Interface (SPI) bus protocol and a 4-bit multiplexed SQI
bus protocol. To provide backward compatibility to tra-
ditional SPI Serial Flash devices, the device’s initial
state after a power-on reset is SPI mode which sup-
ports multi-I/O (x1/x2/x4) Read/Write commands. A
command instruction configures the device to SQI
mode. The dataflow in the SQI mode is similar to the
SPI mode, except it uses four multiplexed I/O signals
for command, address, and data sequence.
SQI Flash Memory supports both Mode 0 (0,0) and
Mode 3 (1,1) bus operations. The difference between
the two modes is the state of the SCK signal when the
bus master is in stand-by mode and no data is being
transferred. The SCK signal is low for Mode 0 and SCK
signal is high for Mode 3. For both modes, the Serial
Data I/O (SIO[3:0]) is sampled at the rising edge of the
SCK clock signal for input, and driven after the falling
edge of the SCK clock signal for output. The traditional
SPI protocol uses separate input (SI) and output (SO)
data signals as shown in Figure 4-1. The SQI protocol
uses four multiplexed signals, SIO[3:0], for both data in
and data out, as shown in Figure 4-2. This means the
SQI protocol quadruples the traditional bus transfer
speed at the same clock frequency, without the need
for more pins on the package.
FIGURE 4-1: SPI PROTOCOL (TRADITIONAL 25 SERIES SPI DEVICE)
FIGURE 4-2: SQI SERIAL QUAD I/O PROTOCOL
4.1 Device Protection
SST26VF064B/064BA offer a flexible memory protec-
tion scheme that allows the protection state of each
individual block to be controlled separately. In addition,
the Write-Protection Lock-Down register prevents any
change of the lock status during device operation. To
avoid inadvertent writes during power-up, the device is
write-protected by default after a power-on reset cycle.
A Global Block-Protection Unlock command offers a
single command cycle that unlocks the entire memory
array for faster manufacturing throughput.
For extra protection, there is an additional non-volatile
register that can permanently write-protect the Block-
Protection register bits for each individual block. Each
of the corresponding lock-down bits are one time pro-
grammable (OTP)—once written, they cannot be
erased. Data that had been previously programmed
into these blocks cannot be altered by programming or
erase and is not reversible
4.1.1 INDIVIDUAL BLOCK PROTECTION
SST26VF064B/064BA have a Block-Protection regis-
ter which provides a software mechanism to write-lock
the individual memory blocks and write-lock, and/or
read-lock, the individual parameter blocks. The Block-
Protection register is 144 bits wide: two bits each for the
eight 8 KByte parameter blocks (write-lock and read-
lock), and one bit each for the remaining 32 KByte and
64 KByte overlay blocks (write-lock). See Table 5-6 for
address range protected per register bit.
Each bit in the Block-Protection register (BPR) can be
written to a ‘1’ (protected) or ‘0’ (unprotected). For the
parameter blocks, the most significant bit is for read-
lock, and the least significant bit is for write-lock. Read-
locking the parameter blocks provides additional secu-
rity for sensitive data after retrieval (e.g., after initial
boot). If a block is read-locked all reads to the block
return data 00H.
25119 F03.0
MODE 3
SCK
SI
SO
CE#
MODE 3
DON'T CARE
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
MODE 0MODE 0
HIGH IMPEDANCE
MSB
MSB
25119 F04.0
MODE 3
CLK
SIO(3:0)
CE#
MODE 3
C1 C0 A5 A4 A3 A2 A1 A0 H0 L0 H1 L1 H2 L2 H3 L3
MODE 0MODE 0
MSB