Datasheet

2009 Microchip Technology Inc. DS39897C-page 233
PIC24FJ256GB110 FAMILY
REGISTER 18-16: U1IR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
R/K-0, HS U-0 R/K-0, HS R/K-0, HS R/K-0, HS R/K-0, HS R-0 R/K-0, HS
STALLIF
RESUMEIF IDLEIF TRNIF SOFIF UERRIF URSTIF
bit 7 bit 0
Legend: U = Unimplemented bit, read as ‘0
R = Readable bit K = Write ‘1’ to clear bit HS = Hardware Settable bit
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-8 Unimplemented: Read as ‘0
bit 7 STALLIF: STALL Handshake Interrupt bit
1 = A STALL handshake was sent by the peripheral during the handshake phase of the transaction in
Device mode
0 = A STALL handshake has not been sent
bit 6 Unimplemented: Read as ‘0
bit 5 RESUMEIF: Resume Interrupt bit
1 = A K-state is observed on the D+ or D- pin for 2.5 s (differential ‘1’ for low speed, differential ‘0’ for
full speed)
0 = No K-state observed
bit 4 IDLEIF: Idle Detect Interrupt bit
1 = Idle condition detected (constant Idle state of 3 ms or more)
0 = No Idle condition detected
bit 3 TRNIF: Token Processing Complete Interrupt bit
1 = Processing of current token is complete; read U1STAT register for endpoint information
0 = Processing of current token not complete; clear U1STAT register or load next token from STAT
(clearing this bit causes the STAT FIFO to advance)
bit 2 SOFIF: Start-Of-Frame Token Interrupt bit
1 = A Start-Of-Frame token received by the peripheral or the Start-Of-Frame threshold reached by the
host
0 = No Start-Of-Frame token received or threshold reached
bit 1 UERRIF: USB Error Condition Interrupt bit (read-only)
1 = An unmasked error condition has occurred; only error states enabled in the U1EIE register can set
this bit
0 = No unmasked error condition has occurred
bit 0 URSTIF: USB Reset Interrupt bit
1 = Valid USB Reset has occurred for at least 2.5 s; Reset state must be cleared before this bit can
be reasserted
0 = No USB Reset has occurred. Individual bits can only be cleared by writing a ‘1’ to the bit position
as part of a word write operation on the entire register. Using Boolean instructions or bitwise oper-
ations to write to a single bit position will cause all set bits at the moment of the write to become
cleared.
Note: Individual bits can only be cleared by writing a ‘1 to the bit position as part of a word write operation on the
entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause
all set bits at the moment of the write to become cleared.