Datasheet

PIC24FV32KA304 FAMILY
DS39995D-page 250 2011-2013 Microchip Technology Inc.
26.4 Deep Sleep Watchdog Timer
(DSWDT)
In PIC24FV32KA304 family devices, in addition to the
WDT module, a DSWDT module is present which runs
while the device is in Deep Sleep, if enabled. It is driven
by either the SOSC or LPRC oscillator. The clock source
is selected by the Configuration bit, DSWDTOSC
(FDS<4>).
The DSWDT can be configured to generate a time-out,
at 2.1 ms to 25.7 days, by selecting the respective
postscaler. The postscaler can be selected by the
Configuration bits, DSWDTPS<3:0> (FDS<3:0>).
When the DSWDT is enabled, the clock source is also
enabled.
DSWDT is one of the sources that can wake-up the
device from Deep Sleep mode.
26.5 Program Verification and
Code Protection
For all devices in the PIC24FV32KA304 family, code
protection for the boot segment is controlled by the
Configuration bit, BSS0, and the general segment by
the Configuration bit, GSS0. These bits inhibit external
reads and writes to the program memory space This
has no direct effect in normal execution mode.
Write protection is controlled by bit, BWRP, for the boot
segment and bit, GWRP, for the general segment in the
Configuration Word. When these bits are programmed
to ‘0’, internal write and erase operations to program
memory are blocked.
26.6 In-Circuit Serial Programming
PIC24FV32KA304 family microcontrollers can be
serially programmed while in the end application circuit.
This is simply done with two lines for clock (PGECx) and
data (PGEDx), and three other lines for power, ground
and the programming voltage. This allows customers to
manufacture boards with unprogrammed devices and
then program the microcontroller just before shipping the
product. This also allows the most recent firmware or a
custom firmware to be programmed.
26.7 In-Circuit Debugger
When MPLAB
®
ICD 3, MPLAB REAL ICE™ or PICkit™
3 is selected as a debugger, the in-circuit debugging
functionality is enabled. This function allows simple
debugging functions when used with MPLAB IDE.
Debugging functionality is controlled through the PGECx
and PGEDx pins.
To use the in-circuit debugger function of the device,
the design must implement ICSP connections to
MCLR
, VDD, VSS, PGECx, PGEDx and the pin pair. In
addition, when the feature is enabled, some of the
resources are not available for general use. These
resources include the first 80 bytes of data RAM and
two I/O pins.