Datasheet
Table Of Contents
- Analog Features:
- LCD Driver and Keypad Interface Features:
- Flexible Oscillator Structure:
- Low-Power Features:
- Peripheral Highlights:
- Special Microcontroller Features:
- Target Applications:
- Pin Diagram
- Typical Application Circuit: Single-Phase Power Meter
- Table of Contents
- Most Current Data Sheet
- Errata
- Customer Notification System
- 1.0 Device Overview
- 2.0 Guidelines for Getting Started with PIC18FJ Microcontrollers
- 3.0 Oscillator Configurations
- 3.1 Oscillator Types
- 3.2 Control Registers
- 3.3 Clock Sources and Oscillator Switching
- 3.4 External Oscillator Modes
- 3.5 Internal Oscillator Block
- 3.6 Effects of Power-Managed Modes on the Various Clock Sources
- 3.7 Power-up Delays
- 4.0 Power-Managed Modes
- 5.0 Reset
- 6.0 Memory Organization
- 6.1 Program Memory Organization
- 6.2 PIC18 Instruction Cycle
- 6.3 Data Memory Organization
- 6.4 Data Addressing Modes
- 6.5 Program Memory and the Extended Instruction Set
- 6.6 Data Memory and the Extended Instruction Set
- 7.0 Flash Program Memory
- 7.1 Table Reads and Table Writes
- 7.2 Control Registers
- 7.3 Reading the Flash Program Memory
- 7.4 Erasing Flash Program Memory
- 7.5 Writing to Flash Program Memory
- 7.6 Flash Program Operation During Code Protection
- 8.0 8 X 8 Hardware Multiplier
- 8.1 Introduction
- 8.2 Operation
- EXAMPLE 8-1: 8 x 8 Unsigned Multiply Routine
- EXAMPLE 8-2: 8 x 8 Signed Multiply Routine
- TABLE 8-1: Performance Comparison for Various Multiply Operations
- EQUATION 8-1: 16 x 16 Unsigned Multiplication Algorithm
- EXAMPLE 8-3: 16 x 16 Unsigned Multiply Routine
- EQUATION 8-2: 16 x 16 Signed Multiplication Algorithm
- EXAMPLE 8-4: 16 x 16 Signed Multiply Routine
- 9.0 Interrupts
- 10.0 I/O Ports
- FIGURE 10-1: Generic I/O Port Operation
- 10.1 I/O Port Pin Capabilities
- 10.2 PORTA, TRISA and LATA Registers
- 10.3 PORTB, TRISB and LATB Registers
- 10.4 PORTC, TRISC and LATC Registers
- 10.5 PORTD, TRISD and LATD Registers
- 10.6 PORTE, TRISE and LATE Registers
- 10.7 PORTF, LATF and TRISF Registers
- 10.8 PORTG, TRISG and LATG Registers
- 11.0 Timer0 Module
- 12.0 Timer1 Module
- 13.0 Timer2 Module
- 14.0 Timer3 Module
- 15.0 Real-Time Clock and Calendar (RTCC)
- FIGURE 15-1: RTCC Block Diagram
- 15.1 RTCC Module Registers
- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers
- 15.1.1 RTCC Control Registers
- 15.1.2 RTCVALH and RTCVALL Register Mappings
- Register 15-6: Reserved Register
- Register 15-7: Year: Year Value Register(1)
- Register 15-8: MontH: Month Value Register(1)
- Register 15-9: Day: Day Value Register(1)
- Register 15-10: Weekday: Weekday Value Register(1)
- Register 15-11: Hour: Hour Value Register(1)
- Register 15-12: MINUTE: Minute Value Register
- Register 15-13: SECOND: Second Value Register
- 15.1.3 ALRMVALH and ALRMVALL Register Mappings
- Register 15-14: ALRMMNTH: Alarm Month Value Register(1)
- Register 15-15: ALRMDAY: Alarm Day Value Register(1)
- Register 15-16: ALRMWd: Alarm Weekday Value Register(1)
- Register 15-17: ALRMHr: Alarm Hours Value Register(1)
- Register 15-18: ALRMMIN: Alarm Minutes Value Register
- Register 15-19: ALRMSEC: Alarm Seconds Value Register
- 15.1.4 RTCEN Bit Write
- 15.2 Operation
- 15.3 Alarm
- 15.4 Sleep Mode
- 15.5 Reset
- 15.6 Register Maps
- 16.0 Capture/Compare/PWM (CCP) Modules
- 17.0 Liquid Crystal Display (LCD) Driver Module
- FIGURE 17-1: LCD Driver Module Block Diagram
- 17.1 LCD Registers
- 17.2 LCD Clock Source
- 17.3 LCD Bias Generation
- 17.4 LCD Multiplex Types
- 17.5 Segment Enables
- 17.6 Pixel Control
- 17.7 LCD Frame Frequency
- 17.8 LCD Waveform Generation
- FIGURE 17-6: Type-A/Type-B Waveforms in Static Drive
- FIGURE 17-7: Type-A Waveforms in 1/2 MUX, 1/2 Bias Drive
- FIGURE 17-8: Type-B Waveforms in 1/2 MUX, 1/2 Bias Drive
- FIGURE 17-9: Type-A Waveforms in 1/2 MUX, 1/3 Bias Drive
- FIGURE 17-10: Type-B Waveforms in 1/2 MUX, 1/3 Bias Drive
- FIGURE 17-11: Type-A Waveforms in 1/3 MUX, 1/2 Bias Drive
- FIGURE 17-12: Type-B Waveforms in 1/3 MUX, 1/2 Bias Drive
- FIGURE 17-13: Type-A Waveforms in 1/3 MUX, 1/3 Bias Drive
- FIGURE 17-14: Type-B Waveforms in 1/3 MUX, 1/3 Bias Drive
- FIGURE 17-15: Type-A Waveforms in 1/4 MUX, 1/3 Bias Drive
- FIGURE 17-16: Type-B Waveforms in 1/4 MUX, 1/3 Bias Drive
- 17.9 LCD Interrupts
- 17.10 Operation During Sleep
- 17.11 Configuring the LCD Module
- 18.0 Master Synchronous Serial Port (MSSP) Module
- 18.1 Master SSP (MSSP) Module Overview
- 18.2 Control Registers
- 18.3 SPI Mode
- FIGURE 18-1: MSSP Block Diagram (SPI Mode)
- 18.3.1 Registers
- 18.3.2 Operation
- 18.3.3 Enabling SPI I/O
- 18.3.4 Open-Drain Output Option
- 18.3.5 Typical Connection
- 18.3.6 Master Mode
- 18.3.7 Slave Mode
- 18.3.8 Slave Select Synchronization
- 18.3.9 Operation in Power-Managed Modes
- 18.3.10 Effects of a Reset
- 18.3.11 Bus Mode Compatibility
- 18.4 I2C Mode
- FIGURE 18-7: MSSP Block Diagram (I2C™ Mode)
- 18.4.1 Registers
- 18.4.2 Operation
- 18.4.3 Slave Mode
- EXAMPLE 18-2: Address Masking Examples
- FIGURE 18-8: I2C™ Slave Mode Timing with SEN = 0 (Reception, 7-bit Addressing)
- FIGURE 18-9: I2C™ Slave Mode Timing with SEN = 0 and ADMSK<5:1> = 01011 (Reception, 7-bit Addressing)
- FIGURE 18-10: I2C™ Slave Mode Timing (Transmission, 7-bit Addressing)
- FIGURE 18-11: I2C™ Slave Mode Timing with SEN = 0 (Reception, 10-bit Addressing)
- FIGURE 18-12: I2C™ Slave Mode Timing with SEN = 0 and ADMSK<5:1> = 01001 (Reception, 10-bit Addressing)
- FIGURE 18-13: I2C™ Slave Mode Timing (Transmission, 10-bit Addressing)
- 18.4.4 Clock Stretching
- 18.4.5 General Call Address Support
- 18.4.6 Master Mode
- 18.4.7 Baud Rate
- 18.4.8 I2C Master Mode Start Condition Timing
- 18.4.9 I2C Master Mode Repeated Start Condition Timing
- 18.4.10 I2C Master Mode Transmission
- 18.4.11 I2C Master Mode Reception
- 18.4.12 Acknowledge Sequence Timing
- 18.4.13 Stop Condition Timing
- 18.4.14 Sleep Operation
- 18.4.15 Effects of a Reset
- 18.4.16 Multi-Master Mode
- 18.4.17 Multi -Master Communication, Bus Collision and Bus Arbitration
- FIGURE 18-27: Bus Collision Timing for Transmit and Acknowledge
- FIGURE 18-28: Bus Collision During Start Condition (SDA Only)
- FIGURE 18-29: Bus Collision During Start Condition (SCL = 0)
- FIGURE 18-30: BRG Reset Due to SDA Arbitration During Start Condition
- FIGURE 18-31: Bus Collision During a Repeated Start Condition (Case 1)
- FIGURE 18-32: Bus Collision During Repeated Start Condition (Case 2)
- FIGURE 18-33: Bus Collision During a Stop Condition (Case 1)
- FIGURE 18-34: Bus Collision During a Stop Condition (Case 2)
- TABLE 18-4: Registers Associated with I2C™ Operation
- 19.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)
- 19.1 Control Registers
- 19.2 EUSART Baud Rate Generator (BRG)
- 19.3 EUSART Asynchronous Mode
- 19.4 EUSART Synchronous Master Mode
- 19.5 EUSART Synchronous Slave Mode
- 20.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART)
- 20.1 Control Registers
- 20.2 AUSART Baud Rate Generator (BRG)
- 20.3 AUSART Asynchronous Mode
- 20.4 AUSART Synchronous Master Mode
- 20.5 AUSART Synchronous Slave Mode
- 21.0 12-Bit Analog-to-Digital Converter (A/D) Module
- Register 21-1: ADCON0: A/D Control Register 0
- Register 21-2: ADCON1: A/D Control Register 1
- Register 21-3: ADCON2: A/D Control Register 2
- FIGURE 21-1: A/D Block Diagram(1,2)
- FIGURE 21-2: Analog Input Model
- 21.1 A/D Acquisition Requirements
- 21.2 Selecting and Configuring Automatic Acquisition Time
- 21.3 Selecting the A/D Conversion Clock
- 21.4 Configuring Analog Port Pins
- 21.5 A/D Conversions
- 21.6 Use of the CCP2 Trigger
- 21.7 A/D Converter Calibration
- 21.8 Operation in Power-Managed Modes
- 22.0 Dual-Channel, 24-Bit Analog Front End (AFE)
- 23.0 Comparator Module
- Register 23-1: CMCON: Comparator Module Control Register
- 23.1 Comparator Configuration
- 23.2 Comparator Operation
- 23.3 Comparator Reference
- 23.4 Comparator Response Time
- 23.5 Comparator Outputs
- 23.6 Comparator Interrupts
- 23.7 Comparator Operation During Sleep
- 23.8 Effects of a Reset
- 23.9 Analog Input Connection Considerations
- 24.0 Comparator Voltage Reference Module
- 25.0 Charge Time Measurement Unit (CTMU)
- FIGURE 25-1: CTMU Block Diagram
- 25.1 CTMU Operation
- 25.2 CTMU Module Initialization
- 25.3 Calibrating the CTMU Module
- 25.4 Measuring Capacitance with the CTMU
- 25.5 Measuring Time with the CTMU Module
- 25.6 Creating a Delay with the CTMU Module
- 25.7 Operation During Sleep/Idle Modes
- 25.8 Effects of a Reset on CTMU
- 25.9 Registers
- 26.0 Special Features of the CPU
- 26.1 Configuration Bits
- 26.1.1 Considerations for Configuring PIC18F87J72 Family Devices
- TABLE 26-1: Mapping of the Flash Configuration Words to the Configuration Registers
- TABLE 26-2: Configuration Bits and Device IDs
- Register 26-1: CONFIG1L: Configuration Register 1 Low (Byte Address 300000h)
- Register 26-2: CONFIG1H: Configuration Register 1 High (Byte Address 300001h)
- Register 26-3: CONFIG2L: Configuration Register 2 Low (Byte Address 300002h)
- Register 26-4: CONFIG2H: Configuration Register 2 High (Byte Address 300003h)
- Register 26-5: CONFIG3L: Configuration Register 3 Low (Byte Address 300004h)
- Register 26-6: CONFIG3H: Configuration Register 3 High (Byte Address 300005h)
- Register 26-7: DEVID1: Device ID Register 1
- Register 26-8: DEVID2: Device ID Register 2
- 26.1.1 Considerations for Configuring PIC18F87J72 Family Devices
- 26.2 Watchdog Timer (WDT)
- 26.3 On-Chip Voltage Regulator
- 26.4 Two-Speed Start-up
- 26.5 Fail-Safe Clock Monitor
- 26.6 Program Verification and Code Protection
- 26.7 In-Circuit Serial Programming
- 26.8 In-Circuit Debugger
- 26.1 Configuration Bits
- 27.0 Instruction Set Summary
- 27.1 Standard Instruction Set
- 27.2 Extended Instruction Set
- 28.0 Development Support
- 28.1 MPLAB Integrated Development Environment Software
- 28.2 MPLAB C Compilers for Various Device Families
- 28.3 HI-TECH C for Various Device Families
- 28.4 MPASM Assembler
- 28.5 MPLINK Object Linker/ MPLIB Object Librarian
- 28.6 MPLAB Assembler, Linker and Librarian for Various Device Families
- 28.7 MPLAB SIM Software Simulator
- 28.8 MPLAB REAL ICE In-Circuit Emulator System
- 28.9 MPLAB ICD 3 In-Circuit Debugger System
- 28.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express
- 28.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express
- 28.12 MPLAB PM3 Device Programmer
- 28.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits
- 29.0 Electrical Characteristics
- Absolute Maximum Ratings(†)
- 29.1 DC Characteristics: Supply Voltage PIC18F87J72 Family (Industrial)
- 29.2 DC Characteristics: Power-Down and Supply Current PIC18F87J72 Family (Industrial)
- 29.3 DC Characteristics: PIC18F87J72 Family (Industrial)
- 29.4 DC Characteristics: CTMU Current Source Specifications
- 29.5 AC (Timing) Characteristics
- 29.5.1 Timing Parameter Symbology
- 29.5.2 Timing Conditions
- 29.5.3 Timing Diagrams and Specifications
- FIGURE 29-4: External Clock Timing
- TABLE 29-7: External Clock Timing Requirements
- TABLE 29-8: PLL Clock Timing Specifications (Vdd = 2.15V to 3.6V)
- TABLE 29-9: Internal RC Accuracy (INTOSC and INTRC Sources)
- FIGURE 29-5: CLKO and I/O Timing
- TABLE 29-10: CLKO and I/O Timing Requirements
- FIGURE 29-6: Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Timing
- TABLE 29-11: Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer and Brown-out Reset Requirements
- FIGURE 29-7: Timer0 and Timer1 External Clock Timings
- TABLE 29-12: Timer0 and Timer1 External Clock Requirements
- FIGURE 29-8: Capture/Compare/PWM Timings (CCP1, CCP2 Modules)
- TABLE 29-13: Capture/Compare/PWM Requirements (CCP1, CCP2 Modules)
- FIGURE 29-9: Example SPI Master Mode Timing (CKE = 0)
- TABLE 29-14: Example SPI Mode Requirements (Master Mode, Cke = 0)
- FIGURE 29-10: Example SPI Master Mode Timing (CKE = 1)
- TABLE 29-15: Example SPI Mode Requirements (Master Mode, CKE = 1)
- FIGURE 29-11: Example SPI Slave Mode Timing (CKE = 0)
- TABLE 29-16: Example SPI Mode Requirements (Slave Mode Timing, CKE = 0)
- FIGURE 29-12: Example SPI Slave Mode Timing (CKE = 1)
- TABLE 29-17: Example SPI Slave Mode Requirements (CKE = 1)
- FIGURE 29-13: I2C™ Bus Start/Stop Bits Timing
- TABLE 29-18: I2C™ Bus Start/Stop Bits Requirements (Slave Mode)
- FIGURE 29-14: I2C™ Bus Data Timing
- TABLE 29-19: I2C™ Bus Data Requirements (Slave Mode)
- FIGURE 29-15: MSSP I2C™ Bus Start/Stop Bits Timing Waveforms
- TABLE 29-20: MSSP I2C™ Bus Start/Stop Bits Requirements
- FIGURE 29-16: MSSP I2C™ Bus Data Timing
- TABLE 29-21: MSSP I2C™ Bus Data Requirements
- FIGURE 29-17: EUSART/AUSART Synchronous Transmission (Master/Slave) Timing
- TABLE 29-22: EUSART/AUSART Synchronous Transmission Requirements
- FIGURE 29-18: EUSART/AUSART Synchronous Receive (Master/Slave) Timing
- TABLE 29-23: EUSART/AUSART Synchronous Receive Requirements
- TABLE 29-24: A/D Converter Characteristics: PIC18F87J72 Family (Industrial)
- FIGURE 29-19: A/D Conversion Timing
- TABLE 29-25: A/D Conversion Requirements
- TABLE 29-26: Dual-Channel AFE Electrical Characteristics
- TABLE 29-27: Dual-Channel AFE Serial Peripheral Interface Specifications
- FIGURE 29-20: Serial Output Timing Diagram
- FIGURE 29-21: Serial Input Timing Diagram
- FIGURE 29-22: Data Ready Pulse Timing Diagram
- FIGURE 29-23: Specific Timing Diagrams
- 30.0 Packaging Information
- Appendix A: Revision History
- Appendix B: Dual-Channel, 24-Bit AFE Reference
- TABLE B-1: OVERSAMPLING RATIO SETTINGS
- TABLE B-2: Device data rates in function of mclk, osr AND PRESCALE
- TABLE B-3: OVERSAMPLING RATIO SETTINGS
- Step 1
- Step 2
- TABLE B-4: PGA Configuration Setting
- TABLE B-5: adc RESOLUTION vs. osr
- TABLE B-6: OSR = 256 output code examples
- TABLE B-7: OSR = 128 output code examples
- TABLE B-8: OSR = 64 output code examples
- TABLE B-9: OSR = 32 output code examples
- TABLE B-10: Phase Values With MCLK = 4 MHz, OSR = 256
- TABLE B-11: Register Groups
- TABLE B-12: Register Types
- TABLE B-13: Register map
- TABLE B-14: Register Map Grouping for Continuous read modes
- TABLE B-15: Phase Encoding Resolution By Oversampling Ratio
- INDEX
- The Microchip Web Site
- Customer Change Notification Service
- Customer Support
- Reader Response
- Product Identification System

2010 Microchip Technology Inc. Preliminary DS39979A-page 71
PIC18F87J72 FAMILY
6.4 Data Addressing Modes
While the program memory can be addressed in only
one way – through the program counter – information
in the data memory space can be addressed in several
ways. For most instructions, the addressing mode is
fixed. Other instructions may use up to three modes,
depending on which operands are used and whether or
not the extended instruction set is enabled.
The addressing modes are:
• Inherent
• Literal
•Direct
•Indirect
An additional addressing mode, Indexed Literal Offset,
is available when the extended instruction set is
enabled (XINST Configuration bit = 1). Its operation is
discussed in greater detail in Section 6.6.1 “Indexed
Addressing with Literal Offset”.
6.4.1 INHERENT AND LITERAL
ADDRESSING
Many PIC18 control instructions do not need any
argument at all; they either perform an operation that
globally affects the device, or they operate implicitly on
one register. This addressing mode is known as Inherent
Addressing. Examples include SLEEP, RESET and DAW.
Other instructions work in a similar way, but require an
additional explicit argument in the opcode. This is
known as Literal Addressing mode, because they
require some literal value as an argument. Examples
include ADDLW and MOVLW, which respectively, add or
move a literal value to the W register. Other examples
include CALL and GOTO, which include a 20-bit
program memory address.
6.4.2 DIRECT ADDRESSING
Direct Addressing specifies all or part of the source
and/or destination address of the operation within the
opcode itself. The options are specified by the
arguments accompanying the instruction.
In the core PIC18 instruction set, bit-oriented and
byte-oriented instructions use some version of Direct
Addressing by default. All of these instructions include
some 8-bit literal address as their Least Significant
Byte. This address specifies either a register address in
one of the banks of data RAM (Section 6.3.3 “General
Purpose Register File”) or a location in the Access
Bank (Section 6.3.2 “Access Bank”) as the data
source for the instruction.
The Access RAM bit, ‘a’, determines how the address
is interpreted. When ‘a’ is ‘1’, the contents of the BSR
(Section 6.3.1 “Bank Select Register”) are used with
the address to determine the complete 12-bit address
of the register. When ‘a’ is ‘0’, the address is interpreted
as being a register in the Access Bank. Addressing that
uses the Access RAM is sometimes also known as
Direct Forced Addressing mode.
A few instructions, such as MOVFF, include the entire
12-bit address (either source or destination) in their
opcodes. In these cases, the BSR is ignored entirely.
The destination of the operation’s results is determined
by the destination bit, ‘d’. When ‘d’ is ‘1’, the results are
stored back in the source register, overwriting its origi-
nal contents. When ‘d’ is ‘0’, the results are stored in
the W register. Instructions without the ‘d’ argument
have a destination that is implicit in the instruction; their
destination is either the target register being operated
on or the W register.
6.4.3 INDIRECT ADDRESSING
Indirect Addressing allows the user to access a location
in data memory without giving a fixed address in the
instruction. This is done by using File Select Registers
(FSRs) as pointers to the locations to be read or written
to. Since the FSRs are themselves located in RAM as
Special Function Registers, they can also be directly
manipulated under program control. This makes FSRs
very useful in implementing data structures such as
tables and arrays in data memory.
The registers for Indirect Addressing are also
implemented with Indirect File Operands (INDFs) that
permit automatic manipulation of the pointer value with
auto-incrementing, auto-decrementing or offsetting
with another value. This allows for efficient code using
loops, such as the example of clearing an entire RAM
bank in Example 6-5. It also enables users to perform
Indexed Addressing and other Stack Pointer
operations for program memory in data memory.
EXAMPLE 6-5: HOW TO CLEAR RAM
(BANK 1) USING INDIRECT
ADDRESSING
Note: The execution of some instructions in the
core PIC18 instruction set are changed
when the PIC18 extended instruction set is
enabled. See Section 6.6 “Data Memory
and the Extended Instruction Set” for
more information.
LFSR FSR0, 100h ;
NEXT CLRF POSTINC0 ; Clear INDF
; register then
; inc pointer
BTFSS FSR0H, 1 ; All done with
; Bank1?
BRA NEXT ; NO, clear next
CONTINUE ; YES, continue