Datasheet

© 2007 Microchip Technology Inc. Preliminary DS39625C-page 169
PIC18F2585/2680/4585/4680
15.4 PWM Mode
In Pulse-Width Modulation (PWM) mode, the CCP1 pin
produces up to a 10-bit resolution PWM output. Since
the CCP1 pin is multiplexed with a PORTB or PORTC
data latch, the appropriate TRIS bit must be cleared to
make the CCP1 pin an output.
Figure 15-3 shows a simplified block diagram of the
CCP1 module in PWM mode.
For a step-by-step procedure on how to set up the
CCP1 module for PWM operation, see Section 15.4.4
“Setup for PWM Operation”.
FIGURE 15-3: SIMPLIFIED PWM BLOCK
DIAGRAM
A PWM output (Figure 15-4) has a time base (period)
and a time that the output stays high (duty cycle). The
frequency of the PWM is the inverse of the period
(1/period).
FIGURE 15-4: PWM OUTPUT
15.4.1 PWM PERIOD
The PWM period is specified by writing to the PR2
(PR4) register. The PWM period can be calculated
using the following formula.
EQUATION 15-1:
PWM frequency is defined as 1/[PWM period].
When TMR1 (TMR3) is equal to PR2 (PR2), the
following three events occur on the next increment
cycle:
•TMR2 is cleared
The CCP1 pin is set (exception: if PWM duty
cycle = 0%, the CCP1 pin will not be set)
The PWM duty cycle is latched from ECCPR1L
into ECCPR1H
15.4.2 PWM DUTY CYCLE
The PWM duty cycle is specified by writing to the
ECCPR1L register and to the CCP1CON<5:4> bits. Up
to 10-bit resolution is available. The ECCPR1L
contains the eight MSbs and the CCP1CON<5:4> con-
tains the two LSbs. This 10-bit value is represented by
ECCPR1L:ECCP1CON<5:4>. The following equation
is used to calculate the PWM duty cycle in time.
EQUATION 15-2:
ECCPR1L and ECCP1CON<5:4> can be written to at
any time, but the duty cycle value is not latched into
ECCPR1H until after a match between PR2 and TMR2
occurs (i.e., the period is complete). In PWM mode,
ECCPR1H is a read-only register.
Note: Clearing the CCP1CON register will force
the RC2 output latch (depending on
device configuration) to the default low
level. This is not the PORTC I/O data
latch.
CCPR1L
CCPR1H (Slave)
Comparator
TMR2
Comparator
PR2
(Note 1)
R
Q
S
Duty Cycle Registers
CCP1CON<5:4>
Clear Timer,
CCP1 pin and
latch D.C.
TRISC<2>
RC2/CCP1
Note 1: The 8-bit TMR2 value is concatenated with the 2-bit
internal Q clock, or 2 bits of the prescaler, to create the
10-bit time base.
PORTC<2>
Note: The Timer2 postscalers (see Section 13.0
“Timer2 Module”) are not used in the
determination of the PWM frequency. The
postscaler could be used to have a servo
update rate at a different frequency than
the PWM output.
Period
Duty Cycle
TMR2 = PR2
TMR2 = Duty Cycle
TMR2 = PR2
PWM Period = (PR2) + 1] • 4 • TOSC
(TMR2 Prescale Value)
PWM Duty Cycle = (ECCPR1L:ECCP1CON<5:4>) •
T
OSC • (TMR2 Prescale Value)