Datasheet

Table Of Contents
© 2006 Microchip Technology Inc. DS41159E-page 75
PIC18FXX8
7.0 8 x 8 HARDWARE MULTIPLIER
7.1 Introduction
An 8 x 8 hardware multiplier is included in the ALU of
the PIC18FXX8 devices. By making the multiply a
hardware operation, it completes in a single instruction
cycle. This is an unsigned multiply that gives a 16-bit
result. The result is stored in the 16-bit product register
pair (PRODH:PRODL). The multiplier does not affect
any flags in the ALUSTA register.
Making the 8 x 8 multiplier execute in a single cycle
gives the following advantages:
Higher computational throughput
Reduces code size requirements for multiply
algorithms
The performance increase allows the device to be used
in applications previously reserved for Digital Signal
Processors.
Table 7-1 shows a performance comparison between
Enhanced devices using the single-cycle hardware
multiply and performing the same function without the
hardware multiply.
7.2 Operation
Example 7-1 shows the sequence to do an 8 x 8
unsigned multiply. Only one instruction is required
when one argument of the multiply is already loaded in
the WREG register.
Example 7-2 shows the sequence to do an 8 x 8 signed
multiply. To account for the sign bits of the arguments,
each argument’s Most Significant bit (MSb) is tested
and the appropriate subtractions are done.
EXAMPLE 7-1: 8 x 8 UNSIGNED
MULTIPLY ROUTINE
EXAMPLE 7-2: 8 x 8 SIGNED MULTIPLY
ROUTINE
TABLE 7-1: PERFORMANCE COMPARISON
MOVF ARG1, W ;
MULWF ARG2 ; ARG1 * ARG2 ->
; PRODH:PRODL
MOVF ARG1, W
MULWF ARG2 ; ARG1 * ARG2 ->
; PRODH:PRODL
BTFSC ARG2, SB ; Test Sign Bit
SUBWF PRODH ; PRODH = PRODH
; - ARG1
MOVF ARG2, W
BTFSC ARG1, SB ; Test Sign Bit
SUBWF PRODH ; PRODH = PRODH
; - ARG2
Routine Multiply Method
Program
Memory
(Words)
Cycles
(Max)
Time
@ 40 MHz @ 10 MHz @ 4 MHz
8 x 8 unsigned
Without hardware multiply 13 69 6.9 μs 27.6 μs 69 μs
Hardware multiply 1 1 100 ns 400 ns 1 μs
8 x 8 signed
Without hardware multiply 33 91 9.1 μs 36.4 μs 91 μs
Hardware multiply 6 6 600 ns 2.4 μs6 μs
16 x 16 unsigned
Without hardware multiply 21 242 24.2 μs 96.8 μs 242 μs
Hardware multiply 24 24 2.4 μs9.6 μs 24 μs
16 x 16 signed
Without hardware multiply 52 254 25.4 μs102.6 μs 254 μs
Hardware multiply 36 36 3.6 μs 14.4 μs 36 μs