Datasheet

PIC18F2331/2431/4331/4431
DS39616D-page 82 2010 Microchip Technology Inc.
7.7 Operation During Code-Protect
Data EEPROM memory has its own code-protect bits in
Configuration Words. External read and write opera-
tions are disabled if either of these mechanisms are
enabled.
The microcontroller itself can both read and write to the
internal data EEPROM, regardless of the state of the
code-protect Configuration bit. Refer to Section 23.0
“Special Features of the CPU” for additional
information.
7.8 Protection Against Spurious Write
There are conditions when the device may not want to
write to the data EEPROM memory. To protect against
spurious EEPROM writes, various mechanisms have
been implemented. On power-up, the WREN bit is
cleared. In addition, writes to the EEPROM memory
are blocked during the Power-up Timer period (T
PWRT,
Parameter 33).
The write/initiate sequence, and the WREN bit
together, help prevent an accidental write during
Brown-out Reset, power glitch or software malfunction.
7.9 Using the Data EEPROM
The data EEPROM is a high-endurance, byte-
addressable array that has been optimized for the
storage of frequently changing information (e.g.,
program variables or other data that are updated
often). Frequently changing values will typically be
updated more often than Specification D124. If this is
not the case, an array refresh must be performed. For
this reason, variables that change infrequently (such as
constants, IDs, calibration, etc.) should be stored in
Flash program memory.
A simple data EEPROM refresh routine is shown in
Example 7-3.
EXAMPLE 7-3: DATA EEPROM REFRESH ROUTINE
Note: If data EEPROM is only used to store con-
stants and/or data that changes rarely, an
array refresh is likely not required. See
Specification D124.
CLRF EEADR ; Start at address 0
BCF EECON1, CFGS ; Set for memory
BCF EECON1, EEPGD ; Set for Data EEPROM
BCF INTCON, GIE ; Disable interrupts
BSF EECON1, WREN ; Enable writes
LOOP ; Loop to refresh array
BSF EECON1, RD ; Read current address
MOVLW 55h ;
MOVWF EECON2 ; Write 55h
Required MOVLW 0AAh ;
Sequence MOVWF EECON2 ; Write 0AAh
BSF EECON1, WR ; Set WR bit to begin write
BTFSC EECON1, WR ; Wait for write to complete
BRA $-2
INCFSZ EEADR, F ; Increment address
BRA LOOP ; Not zero, do it again
BCF EECON1, WREN ; Disable writes
BSF INTCON, GIE ; Enable interrupts