Datasheet

Table Of Contents
PIC18F2221/2321/4221/4321 FAMILY
DS39689F-page 158 © 2009 Microchip Technology Inc.
17.4.4 HALF-BRIDGE MODE
In the Half-Bridge Output mode, two pins are used as
outputs to drive push-pull loads. The PWM output signal
is output on the P1A pin, while the complementary PWM
output signal is output on the P1B pin (Figure 17-4). This
mode can be used for half-bridge applications, as shown
in Figure 17-5, or for full-bridge applications where four
power switches are being modulated with two PWM
signals.
In Half-Bridge Output mode, the programmable dead-
band delay can be used to prevent shoot-through
current in half-bridge power devices. The value of bits,
PDC<6:0>, sets the number of instruction cycles before
the output is driven active. If the value is greater than
the duty cycle, the corresponding output remains
inactive during the entire cycle. See Section 17.4.6
“Programmable Dead-Band Delay” for more details
of the dead-band delay operations.
Since the P1A and P1B outputs are multiplexed with
the PORTC<2> and PORTD<5> data latches, the
TRISC<2> and TRISD<5> bits must be cleared to
configure P1A and P1B as outputs.
FIGURE 17-4: HALF-BRIDGE PWM
OUTPUT
FIGURE 17-5: EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS
Period
Duty Cycle
td
td
(1)
P1A
(2)
P1B
(2)
td = Dead-Band Delay
Period
(1) (1)
Note 1: At this time, the TMR2 register is equal to the
PR2 register.
2: Output signals are shown as active-high.
PIC18F4X21
P1A
P1B
FET
Driver
FET
Driver
V+
V-
Load
+
V
-
+
V
-
FET
Driver
FET
Driver
V+
V-
Load
FET
Driver
FET
Driver
PIC18F4X21
P1A
P1B
Standard Half-Bridge Circuit (“Push-Pull”)
Half-Bridge Output Driving a Full-Bridge Circuit