Datasheet
Table Of Contents
- Power-Managed Modes:
- Flexible Oscillator Structure:
- Peripheral Highlights:
- Peripheral Highlights (Continued):
- Special Microcontroller Features:
- Pin Diagrams
- Pin Diagrams (Continued)
- Pin Diagrams (Continued)
- Table of Contents
- Most Current Data Sheet
- Errata
- Customer Notification System
- 1.0 Device Overview
- 2.0 Guidelines for Getting Started with PIC18F Microcontrollers
- 3.0 Oscillator Configurations
- 4.0 Power-Managed Modes
- 5.0 Reset
- 5.1 RCON Register
- 5.2 Master Clear (MCLR)
- 5.3 Power-on Reset (POR)
- 5.4 Brown-out Reset (BOR)
- 5.5 Device Reset Timers
- 5.5.1 Power-up Timer (PWRT)
- 5.5.2 Oscillator Start-up Timer (OST)
- 5.5.3 PLL Lock Time-out
- 5.5.4 Time-out Sequence
- TABLE 5-2: Time-out in Various Situations
- FIGURE 5-3: Time-out Sequence on Power-up (MCLR Tied to Vdd, Vdd Rise < Tpwrt)
- FIGURE 5-4: Time-out Sequence on Power-up (MCLR Not Tied to Vdd): Case 1
- FIGURE 5-5: Time-out Sequence on Power-up (MCLR Not Tied to Vdd): Case 2
- FIGURE 5-6: Slow Rise Time (MCLR Tied to Vdd, Vdd Rise > Tpwrt)
- FIGURE 5-7: Time-out Sequence on POR w/PLL Enabled (MCLR Tied to Vdd)
- 5.6 Reset State of Registers
- 6.0 Memory Organization
- 6.1 Program Memory Organization
- 6.2 PIC18 Instruction Cycle
- 6.3 Data Memory Organization
- 6.4 Data Addressing Modes
- 6.5 Data Memory and the Extended Instruction Set
- 6.6 PIC18 Instruction Execution and the Extended Instruction Set
- 7.0 Flash Program Memory
- 7.1 Table Reads and Table Writes
- 7.2 Control Registers
- 7.3 Reading the Flash Program Memory
- 7.4 Erasing Flash Program Memory
- 7.5 Writing to Flash Program Memory
- 7.6 Flash Program Operation During Code Protection
- 8.0 Data EEPROM Memory
- 9.0 8 X 8 Hardware Multiplier
- 9.1 Introduction
- 9.2 Operation
- EXAMPLE 9-1: 8 x 8 Unsigned Multiply Routine
- EXAMPLE 9-2: 8 x 8 Signed Multiply Routine
- TABLE 9-1: Performance Comparison for Various Multiply Operations
- EQUATION 9-1: 16 x 16 Unsigned Multiplication Algorithm
- EXAMPLE 9-3: 16 x 16 Unsigned Multiply Routine
- EQUATION 9-2: 16 x 16 Signed Multiplication Algorithm
- EXAMPLE 9-4: 16 x 16 Signed Multiply Routine
- 10.0 Interrupts
- 11.0 I/O Ports
- 12.0 Timer0 Module
- 13.0 Timer1 Module
- 14.0 Timer2 Module
- 15.0 Timer3 Module
- 16.0 Capture/Compare/PWM (CCP) Modules
- Register 16-1: CCPxCON Register (CCP2 Module, CCP1 Module in 28-pin Devices)
- 16.1 CCP Module Configuration
- 16.2 Capture Mode
- 16.3 Compare Mode
- 16.4 PWM Mode
- 17.0 Enhanced Capture/ Compare/PWM (ECCP) Module
- Register 17-1: CCP1CON Register (ECCP1 Module, 40/44-pin Devices)
- 17.1 ECCP Outputs and Configuration
- 17.2 Capture and Compare Modes
- 17.3 Standard PWM Mode
- 17.4 Enhanced PWM Mode
- 17.4.1 PWM Period
- 17.4.2 PWM Duty Cycle
- 17.4.3 PWM Output Configurations
- 17.4.4 Half-Bridge Mode
- 17.4.5 Full-Bridge Mode
- 17.4.6 Programmable Dead-Band Delay
- 17.4.7 Enhanced PWM Auto-Shutdown
- 17.4.8 Start-up Considerations
- 17.4.9 Setup for PWM Operation
- 17.4.10 Operation in Power-Managed Modes
- 17.4.11 Effects of a Reset
- 18.0 Master Synchronous Serial Port (MSSP) Module
- 18.1 Master SSP (MSSP) Module Overview
- 18.2 Control Registers
- 18.3 SPI Mode
- 18.4 I2C Mode
- FIGURE 18-7: MSSP Block Diagram (I2C™ Mode)
- 18.4.1 Registers
- 18.4.2 Operation
- 18.4.3 Slave Mode
- EXAMPLE 18-2: Address Masking
- FIGURE 18-8: I2C™ Slave Mode Timing with SEN = 0 (Reception, 7-Bit Addressing)
- FIGURE 18-9: I2C™ Slave Mode Timing with SEN = 0 and ADMSK<5:1> = 01011 (Reception, 7-bit Addressing)
- FIGURE 18-10: I2C™ Slave Mode Timing (Transmission, 7-Bit Addressing)
- FIGURE 18-11: I2C™ Slave Mode Timing with SEN = 0 and ADMSK = 01001 (Reception, 10-bit Addressing)
- FIGURE 18-12: I2C™ Slave Mode Timing with SEN = 0 (Reception, 10-Bit Addressing)
- FIGURE 18-13: I2C™ Slave Mode Timing (Transmission, 10-Bit Addressing)
- 18.4.4 Clock Stretching
- 18.4.5 General Call Address Support
- 18.4.6 Master Mode
- 18.4.7 Baud Rate
- 18.4.8 I2C Master Mode Start Condition Timing
- 18.4.9 I2C Master Mode Repeated Start Condition Timing
- 18.4.10 I2C Master Mode Transmission
- 18.4.11 I2C Master Mode Reception
- 18.4.12 Acknowledge Sequence Timing
- 18.4.13 Stop Condition Timing
- 18.4.14 Sleep Operation
- 18.4.15 Effects of a Reset
- 18.4.16 Multi-Master Mode
- 18.4.17 Multi -Master Communication, Bus Collision and Bus Arbitration
- FIGURE 18-27: Bus Collision Timing for Transmit and Acknowledge
- FIGURE 18-28: Bus Collision During Start Condition (SDA Only)
- FIGURE 18-29: Bus Collision During Start Condition (SCL = 0)
- FIGURE 18-30: BRG Reset Due to SDA Arbitration During Start Condition
- FIGURE 18-31: Bus Collision During a Repeated Start Condition (Case 1)
- FIGURE 18-32: Bus Collision During Repeated Start Condition (Case 2)
- FIGURE 18-33: Bus Collision During a Stop Condition (Case 1)
- FIGURE 18-34: Bus Collision During a Stop Condition (Case 2)
- TABLE 18-4: Registers Associated with I2C™ Operation
- 19.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)
- Register 19-1: TXSTA: Transmit Status And Control Register
- Register 19-2: RCSTA: Receive Status And Control Register
- Register 19-3: BAUDCON: Baud Rate Control Register
- 19.1 Baud Rate Generator (BRG)
- 19.2 EUSART Asynchronous Mode
- 19.3 EUSART Synchronous Master Mode
- 19.4 EUSART Synchronous Slave Mode
- 20.0 10-Bit Analog-to-Digital Converter (A/D) Module
- Register 20-1: ADCON0: A/D Control Register 0
- Register 20-2: ADCON1: A/D Control Register 1
- Register 20-3: ADCON2: A/D Control Register 2
- FIGURE 20-1: A/D Block Diagram
- FIGURE 20-2: A/D Transfer Function
- FIGURE 20-3: Analog Input Model
- 20.1 A/D Acquisition Requirements
- 20.2 Selecting and Configuring Acquisition Time
- 20.3 Selecting the A/D Conversion Clock
- 20.4 Operation in Power-Managed Modes
- 20.5 Configuring Analog Port Pins
- 20.6 A/D Conversions
- 20.7 Discharge
- 20.8 Use of the CCP2 Trigger
- 21.0 Comparator Module
- Register 21-1: CMCON: Comparator Control Register
- 21.1 Comparator Configuration
- 21.2 Comparator Operation
- 21.3 Comparator Reference
- 21.4 Comparator Response Time
- 21.5 Comparator Outputs
- 21.6 Comparator Interrupts
- 21.7 Comparator Operation During Sleep
- 21.8 Effects of a Reset
- 21.9 Analog Input Connection Considerations
- 22.0 Comparator Voltage Reference Module
- 23.0 High/Low-Voltage Detect (HLVD)
- 24.0 Special Features of the CPU
- 24.1 Configuration Bits
- TABLE 24-1: Configuration Bits and Device IDs
- Register 24-1: CONFIG1H: Configuration Register 1 High (Byte Address 300001h)
- Register 24-2: CONFIG2L: Configuration Register 2 Low (Byte Address 300002h)
- Register 24-3: CONFIG2H: Configuration Register 2 High (Byte Address 300003h)
- Register 24-4: CONFIG3H: Configuration Register 3 High (Byte Address 300005h)
- Register 24-5: CONFIG4L: Configuration Register 4 Low (Byte Address 300006h)
- Register 24-6: CONFIG5L: Configuration Register 5 Low (Byte Address 300008h)
- Register 24-7: CONFIG5H: Configuration Register 5 High (Byte Address 300009h)
- Register 24-8: CONFIG6L: Configuration Register 6 Low (Byte Address 30000Ah)
- Register 24-9: CONFIG6H: Configuration Register 6 High (Byte Address 30000Bh)
- Register 24-10: CONFIG7L: Configuration Register 7 Low (Byte Address 30000Ch)
- Register 24-11: CONFIG7H: Configuration Register 7 High (Byte Address 30000Dh)
- Register 24-12: DEVID1: Device ID Register 1 for PIC18F2221/2321/4221/4321 Devices
- Register 24-13: DEVID2: Device ID Register 2 for PIC18F2221/2321/4221/4321 Devices
- 24.2 Watchdog Timer (WDT)
- 24.3 Two-Speed Start-up
- 24.4 Fail-Safe Clock Monitor
- 24.5 Program Verification and Code Protection
- 24.6 ID Locations
- 24.7 In-Circuit Serial Programming
- 24.8 In-Circuit Debugger
- 24.9 Single-Supply ICSP Programming
- 24.1 Configuration Bits
- 25.0 Instruction Set Summary
- 25.1 Standard Instruction Set
- 25.2 Extended Instruction Set
- 26.0 Development Support
- 27.0 Electrical Characteristics
- Absolute Maximum Ratings(†)
- 27.1 DC Characteristics: Supply Voltage PIC18F2221/2321/4221/4321 (Industrial) PIC18LF2221/2321/4221/4321 (Industrial)
- 27.2 DC Characteristics: Power-Down and Supply Current PIC18F2221/2321/4221/4321 (Industrial) PIC18LF2221/2321/4221/4321 (Industrial)
- 27.3 DC Characteristics: PIC18F2221/2321/4221/4321 (Industrial) PIC18LF2221/2321/4221/4321 (Industrial)
- 27.4 AC (Timing) Characteristics
- 27.4.1 Timing Parameter Symbology
- 27.4.2 Timing Conditions
- 27.4.3 Timing Diagrams and Specifications
- FIGURE 27-6: External Clock Timing (All Modes Except PLL)
- TABLE 27-6: External Clock Timing Requirements
- TABLE 27-7: PLL Clock Timing Specifications (Vdd = 4.2V to 5.5V)
- TABLE 27-8: AC Characteristics: Internal RC Accuracy
- FIGURE 27-7: CLKO and I/O Timing
- TABLE 27-9: CLKO and I/O Timing Requirements
- FIGURE 27-8: Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Timing
- FIGURE 27-9: Brown-out Reset Timing
- TABLE 27-10: Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer and Brown-out Reset Requirements
- FIGURE 27-10: Timer0 and Timer1 External Clock Timings
- TABLE 27-11: Timer0 and Timer1 External Clock Requirements
- FIGURE 27-11: Capture/Compare/PWM Timings (All CCP Modules)
- TABLE 27-12: Capture/Compare/PWM Requirements (All CCP Modules)
- FIGURE 27-12: Parallel Slave Port Timing (PIC18F4221/4321)
- TABLE 27-13: Parallel Slave Port Requirements (PIC18F4221/4321)
- FIGURE 27-13: Example SPI Master Mode Timing (CKE = 0)
- TABLE 27-14: Example SPI Mode Requirements (Master Mode, CKE = 0)
- FIGURE 27-14: Example SPI Master Mode Timing (CKE = 1)
- TABLE 27-15: Example SPI Mode Requirements (Master Mode, CKE = 1)
- FIGURE 27-15: Example SPI Slave Mode Timing (CKE = 0)
- TABLE 27-16: Example SPI Mode Requirements (Slave Mode Timing, CKE = 0)
- FIGURE 27-16: Example SPI Slave Mode Timing (CKE = 1)
- TABLE 27-17: Example SPI Slave Mode Requirements (CKE = 1)
- FIGURE 27-17: I2C™ Bus Start/Stop Bits Timing
- TABLE 27-18: I2C™ Bus Start/Stop Bits Requirements (Slave Mode)
- FIGURE 27-18: I2C™ Bus Data Timing
- TABLE 27-19: I2C™ Bus Data Requirements (Slave Mode)
- FIGURE 27-19: Master SSP I2C™ Bus Start/Stop Bits Timing Waveforms
- TABLE 27-20: Master SSP I2C™ Bus Start/Stop Bits Requirements
- FIGURE 27-20: Master SSP I2C™ Bus Data Timing
- TABLE 27-21: Master SSP I2C™ Bus Data Requirements
- FIGURE 27-21: EUSART Synchronous Transmission (Master/slave) Timing
- TABLE 27-22: EUSART Synchronous Transmission Requirements
- FIGURE 27-22: EUSART Synchronous Receive (Master/Slave) Timing
- TABLE 27-23: EUSART Synchronous Receive Requirements
- TABLE 27-24: A/D Converter Characteristics
- FIGURE 27-23: A/D Conversion Timing
- TABLE 27-25: A/D Conversion Requirements
- 28.0 Packaging Information
- Appendix A: Revision History
- Appendix B: Device Differences
- Appendix C: Conversion Considerations
- Appendix D: Migration from Baseline to Enhanced Devices
- Appendix E: Migration From Mid-Range to Enhanced Devices
- Appendix F: Migration From High-End to Enhanced Devices
- INDEX
- The Microchip Web Site
- Customer Change Notification Service
- Customer Support
- Reader Response
- PIC18F2221/2321/4221/4321 Product Identification System
- Worldwide Sales and Service
© 2009 Microchip Technology Inc. DS39689F-page 97
PIC18F2221/2321/4221/4321 FAMILY
10.0 INTERRUPTS
The PIC18F2221/2321/4221/4321 family devices have
multiple interrupt sources and an interrupt priority
feature that allows most interrupt sources to be
assigned a high-priority level or a low-priority level. The
high-priority interrupt vector is at 0008h and the low-
priority interrupt vector is at 0018h. High-priority
interrupt events will interrupt any low-priority interrupts
that may be in progress.
There are ten registers which are used to control
interrupt operation. These registers are:
• RCON
•INTCON
• INTCON2
• INTCON3
• PIR1, PIR2
• PIE1, PIE2
• IPR1, IPR2
It is recommended that the Microchip header files
supplied with MPLAB
®
IDE be used for the symbolic bit
names in these registers. This allows the assembler/
compiler to automatically take care of the placement of
these bits within the specified register.
In general, interrupt sources have three bits to control
their operation. They are:
• Flag bit to indicate that an interrupt event
occurred
• Enable bit that allows program execution to
branch to the interrupt vector address when the
flag bit is set
• Priority bit to select high priority or low priority
The interrupt priority feature is enabled by setting the
IPEN bit (RCON<7>). When interrupt priority is
enabled, there are two bits which enable interrupts
globally. Setting the GIEH bit (INTCON<7>) enables all
interrupts that have the priority bit set (high priority).
Setting the GIEL bit (INTCON<6>) enables all
interrupts that have the priority bit cleared (low priority).
When the interrupt flag, enable bit and appropriate
global interrupt enable bit are set, the interrupt will vec-
tor immediately to address 0008h or 0018h, depending
on the priority bit setting. Individual interrupts can be
disabled through their corresponding enable bits.
When the IPEN bit is cleared (default state), the
interrupt priority feature is disabled and interrupts are
compatible with PIC
®
mid-range devices. In
Compatibility mode, the interrupt priority bits for each
source have no effect. INTCON<6> is the PEIE bit,
which enables/disables all peripheral interrupt sources.
INTCON<7> is the GIE bit, which enables/disables all
interrupt sources. All interrupts branch to address
0008h in Compatibility mode.
When an interrupt is responded to, the global interrupt
enable bit is cleared to disable further interrupts. If the
IPEN bit is cleared, this is the GIE bit. If interrupt priority
levels are used, this will be either the GIEH or GIEL bit.
High-priority interrupt sources can interrupt a low-
priority interrupt. Low-priority interrupts are not
processed while high-priority interrupts are in progress.
The return address is pushed onto the stack and the
PC is loaded with the interrupt vector address (0008h
or 0018h). Once in the Interrupt Service Routine, the
source(s) of the interrupt can be determined by polling
the interrupt flag bits. The interrupt flag bits must be
cleared in software before re-enabling interrupts to
avoid recursive interrupts.
The “return from interrupt” instruction, RETFIE, exits
the interrupt routine and sets the GIE bit (GIEH or GIEL
if priority levels are used), which re-enables interrupts.
For external interrupt events, such as the INTx pins or
the PORTB input change interrupt, the interrupt latency
will be three to four instruction cycles. The exact
latency is the same for one or two-cycle instructions.
Individual interrupt flag bits are set, regardless of the
status of their corresponding enable bit or the GIE bit.
Note: Do not use the MOVFF instruction to modify
any of the interrupt control registers while
any interrupt is enabled. Doing so may
cause erratic microcontroller behavior.