Datasheet

Table Of Contents
PIC18F2221/2321/4221/4321 FAMILY
DS39689F-page 92 © 2009 Microchip Technology Inc.
8.5 Operation During Code-Protect
Data EEPROM memory has its own code-protect bits in
Configuration Words. External read and write
operations are disabled if code protection is enabled.
The microcontroller itself can both read and write to the
internal data EEPROM, regardless of the state of the
code-protect Configuration bit. Refer to Section 24.0
“Special Features of the CPU for additional
information.
8.6 Protection Against Spurious Write
To protect against spurious EEPROM writes, various
mechanisms have been implemented. On power-up,
the WREN bit is cleared. In addition, writes to the
EEPROM are blocked during the Power-up Timer
period (T
PWRT, parameter 33).
The write initiate sequence and the WREN bit together
help prevent an accidental write during Brown-out
Reset, power glitch or software malfunction.
8.7 Using the Data EEPROM
The data EEPROM is a high-endurance, byte
addressable array that has been optimized for the
storage of frequently changing data. Such data is
typically updated at least one time within the number of
writes defined by specification, D124. If any location
storing data is not written at least this often, the data
EEPROM array must be refreshed. For this reason,
values that change infrequently, or not at all, should be
stored in Flash program memory.
A simple data EEPROM refresh routine is shown in
Example 8-3.
EXAMPLE 8-3: DATA EEPROM REFRESH ROUTINE
Note: If data EEPROM is only used to store con-
stants and/or data that changes often, an
array refresh is likely not required. See
specification, D124.
CLRF EEADR ; Start at address 0
BCF EECON1, CFGS ; Set for memory
BCF EECON1, EEPGD ; Set for Data EEPROM
BCF INTCON, GIE ; Disable interrupts
BSF EECON1, WREN ; Enable writes
LOOP ; Loop to refresh array
BSF EECON1, RD ; Read current address
MOVLW 55h ;
MOVWF EECON2 ; Write 55h
MOVLW 0AAh ;
MOVWF EECON2 ; Write 0AAh
BSF EECON1, WR ; Set WR bit to begin write
BTFSC EECON1, WR ; Wait for write to complete
BRA $-2
INCFSZ EEADR, F ; Increment address
BRA LOOP ; Not zero, do it again
BCF EECON1, WREN ; Disable writes
BSF INTCON, GIE ; Enable interrupts