Datasheet
Table Of Contents
- Low-Power Features:
- Oscillators:
- Peripheral Highlights:
- Special Microcontroller Features:
- Pin Diagrams
- Table of Contents
- Most Current Data Sheet
- Errata
- Customer Notification System
- 1.0 Device Overview
- 2.0 Oscillator Configurations
- 3.0 Power Managed Modes
- 4.0 Reset
- FIGURE 4-1: Simplified Block Diagram of On-Chip Reset Circuit
- 4.1 Power-on Reset (POR)
- 4.2 Power-up Timer (PWRT)
- 4.3 Oscillator Start-up Timer (OST)
- 4.4 PLL Lock Time-out
- 4.5 Brown-out Reset (BOR)
- 4.6 Time-out Sequence
- TABLE 4-1: Time-out in Various Situations
- Register 4-1: RCON Register Bits and Positions
- TABLE 4-2: Status Bits, Their Significance and the Initialization Condition for RCON Register
- TABLE 4-3: Initialization Conditions for All Registers
- FIGURE 4-3: Time-out Sequence on Power-up (MCLR Tied to Vdd, Vdd Rise < Tpwrt)
- FIGURE 4-4: Time-out Sequence on Power-up (MCLR Not Tied to Vdd): Case 1
- FIGURE 4-5: Time-out Sequence on Power-up (MCLR Not Tied to Vdd): Case 2
- FIGURE 4-6: Slow Rise Time (MCLR Tied to Vdd, Vdd Rise > Tpwrt)
- FIGURE 4-7: Time-out Sequence on POR W/PLL Enabled (MCLR Tied to Vdd)
- 5.0 Memory Organization
- FIGURE 5-1: Program Memory Map and Stack for PIC18F1220
- 5.1 Program Memory Organization
- 5.2 Return Address Stack
- 5.3 Fast Register Stack
- 5.4 PCL, PCLATH and PCLATU
- 5.5 Clocking Scheme/Instruction Cycle
- 5.6 Instruction Flow/Pipelining
- 5.7 Instructions in Program Memory
- 5.8 Look-up Tables
- 5.9 Data Memory Organization
- 5.10 Access Bank
- 5.11 Bank Select Register (BSR)
- 5.12 Indirect Addressing, INDF and FSR Registers
- 5.13 Status Register
- 5.14 RCON Register
- 6.0 Flash Program Memory
- 7.0 Data EEPROM Memory
- 8.0 8 X 8 Hardware Multiplier
- 9.0 Interrupts
- 10.0 I/O Ports
- FIGURE 10-1: Generic I/O Port Operation
- 10.1 PORTA, TRISA and LATA Registers
- EXAMPLE 10-1: Initializing PORTA
- FIGURE 10-2: Block Diagram of RA3:RA0 Pins
- FIGURE 10-3: Block Diagram of OSC2/CLKO/RA6 Pin
- FIGURE 10-4: Block Diagram of RA4/T0CKI Pin
- FIGURE 10-5: Block Diagram of OSC1/CLKI/RA7 Pin
- FIGURE 10-6: MCLR/Vpp/RA5 Pin Block Diagram
- TABLE 10-1: PORTA Functions
- TABLE 10-2: Summary of Registers Associated with PORTA
- 10.2 PORTB, TRISB and LATB Registers
- EXAMPLE 10-2: Initializing PORTB
- FIGURE 10-7: Block Diagram of RB0/AN4/INT0 Pin
- FIGURE 10-8: Block Diagram of RB1/AN5/TX/CK/INT1 Pin
- FIGURE 10-9: Block Diagram of RB2/P1B/INT2 Pin
- FIGURE 10-10: Block Diagram of RB3/CCP1/P1A Pin
- FIGURE 10-11: Block Diagram of RB4/AN6/RX/DT/KBI0 Pin
- FIGURE 10-12: Block Diagram of RB5/PGM/KBI1 Pin
- FIGURE 10-13: Block Diagram of RB6/PGC/T1OSO/T13CKI/P1C/KBI2 Pin
- FIGURE 10-14: Block Diagram of RB7/PGD/T1OSI/P1D/KBI3 Pin
- TABLE 10-3: PORTB Functions
- TABLE 10-4: Summary of Registers Associated with PORTB
- 11.0 Timer0 Module
- 12.0 Timer1 Module
- 13.0 Timer2 Module
- 14.0 Timer3 Module
- 15.0 Enhanced Capture/ Compare/PWM (ECCP) Module
- Register 15-1: CCP1CON Register for Enhanced CCP Operation
- 15.1 ECCP Outputs
- 15.2 CCP Module
- 15.3 Capture Mode
- 15.4 Compare Mode
- 15.5 Enhanced PWM Mode
- 15.5.1 PWM Period
- 15.5.2 PWM Duty Cycle
- 15.5.3 PWM Output Configurations
- 15.5.4 Half-Bridge Mode
- 15.5.5 Full-Bridge Mode
- 15.5.6 Programmable Dead-Band Delay
- 15.5.7 Enhanced PWM Auto-Shutdown
- 15.5.8 Start-up Considerations
- 15.5.9 Setup for PWM Operation
- 15.5.10 Operation in Low-Power Modes
- 15.5.11 Effects of a Reset
- 16.0 Enhanced Addressable Universal Synchronous Asynchronous Receiver Transmitter (EUSART)
- 16.1 Asynchronous Operation in Power Managed Modes
- 16.2 EUSART Baud Rate Generator (BRG)
- 16.3 EUSART Asynchronous Mode
- 16.4 EUSART Synchronous Master Mode
- 16.5 EUSART Synchronous Slave Mode
- 17.0 10-Bit Analog-to-Digital Converter (A/D) Module
- Register 17-1: ADCON0: A/D Control Register 0
- Register 17-2: ADCON1: A/D Control Register 1
- Register 17-3: ADCON2: A/D Control Register 2
- FIGURE 17-1: A/D Block Diagram
- FIGURE 17-2: Analog Input Model
- 17.1 A/D Acquisition Requirements
- 17.2 A/D Vref+ and Vref- References
- 17.3 Selecting and Configuring Automatic Acquisition Time
- 17.4 Selecting the A/D Conversion Clock
- 17.5 Operation in Low-Power Modes
- 17.6 Configuring Analog Port Pins
- 17.7 A/D Conversions
- 17.8 Use of the CCP1 Trigger
- 18.0 Low-Voltage Detect
- 19.0 Special Features of the CPU
- 19.1 Configuration Bits
- TABLE 19-1: Configuration Bits and Device IDs
- Register 19-1: CONFIG1H: Configuration Register 1 High (Byte Address 300001h)
- Register 19-2: CONFIG2L: Configuration Register 2 Low (Byte Address 300002h)
- Register 19-3: CONFIG2H: Configuration Register 2 High (Byte Address 300003h)
- Register 19-4: CONFIG3H: Configuration Register 3 High (Byte Address 300005h)
- Register 19-5: CONFIG4L: Configuration Register 4 Low (Byte Address 300006h)
- Register 19-6: CONFIG5L: Configuration Register 5 Low (Byte Address 300008h)
- Register 19-7: CONFIG5H: Configuration Register 5 High (Byte Address 300009h)
- Register 19-8: CONFIG6L: Configuration Register 6 Low (Byte Address 30000Ah)
- Register 19-9: CONFIG6H: Configuration Register 6 High (Byte Address 30000Bh)
- Register 19-10: CONFIG7L: Configuration Register 7 Low (Byte Address 30000Ch)
- Register 19-11: CONFIG7H: Configuration Register 7 High (Byte Address 30000Dh)
- Register 19-12: DEVID1: Device ID Register 1 for PIC18F1220/1320 Devices
- Register 19-13: DEVID2: Device ID Register 2 for PIC18F1220/1320 Devices
- 19.2 Watchdog Timer (WDT)
- 19.3 Two-Speed Start-up
- 19.4 Fail-Safe Clock Monitor
- 19.5 Program Verification and Code Protection
- 19.6 ID Locations
- 19.7 In-Circuit Serial Programming
- 19.8 In-Circuit Debugger
- 19.9 Low-Voltage ICSP Programming
- 19.1 Configuration Bits
- 20.0 Instruction Set Summary
- 21.0 Development Support
- 21.1 MPLAB Integrated Development Environment Software
- 21.2 MPASM Assembler
- 21.3 MPLAB C18 and MPLAB C30 C Compilers
- 21.4 MPLINK Object Linker/ MPLIB Object Librarian
- 21.5 MPLAB ASM30 Assembler, Linker and Librarian
- 21.6 MPLAB SIM Software Simulator
- 21.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator
- 21.8 MPLAB REAL ICE In-Circuit Emulator System
- 21.9 MPLAB ICD 2 In-Circuit Debugger
- 21.10 MPLAB PM3 Device Programmer
- 21.11 PICSTART Plus Development Programmer
- 21.12 PICkit 2 Development Programmer
- 21.13 Demonstration, Development and Evaluation Boards
- 22.0 Electrical Characteristics
- Absolute Maximum Ratings(†)
- 22.1 DC Characteristics: Supply Voltage PIC18F1220/1320 (Industrial) PIC18LF1220/1320 (Industrial)
- 22.2 DC Characteristics: Power-Down and Supply Current PIC18F1220/1320 (Industrial) PIC18LF1220/1...
- 22.3 DC Characteristics: PIC18F1220/1320 (Industrial) PIC18LF1220/1320 (Industrial)
- 22.4 AC (Timing) Characteristics
- 22.4.1 Timing Parameter Symbology
- 22.4.2 Timing Conditions
- 22.4.3 Timing Diagrams and Specifications
- FIGURE 22-6: External Clock Timing (All Modes Except PLL)
- TABLE 22-4: External Clock Timing Requirements
- TABLE 22-5: PLL Clock Timing Specifications, HS/HSPLL Mode (Vdd = 4.2V to 5.5V)
- TABLE 22-6: Internal RC Accuracy: PIC18F1220/1320 (INDUSTRIAL) PIC18LF1220/1320 (INDUSTRIAL)
- FIGURE 22-7: CLKO and I/O Timing
- TABLE 22-7: CLKO and I/O Timing Requirements
- FIGURE 22-8: Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Timing
- FIGURE 22-9: Brown-out Reset Timing
- TABLE 22-8: Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer and Brown-out Reset ...
- FIGURE 22-10: Timer0 and Timer1 External Clock Timings
- TABLE 22-9: Timer0 and Timer1 External Clock Requirements
- FIGURE 22-11: Capture/Compare/PWM Timings (All CCP Modules)
- TABLE 22-10: Capture/Compare/PWM Requirements (All CCP Modules)
- FIGURE 22-12: EUSART Synchronous Transmission (Master/Slave) Timing
- TABLE 22-11: EUSART Synchronous Transmission Requirements
- FIGURE 22-13: EUSART Synchronous Receive (Master/Slave) Timing
- TABLE 22-12: EUSART Synchronous Receive Requirements
- TABLE 22-13: A/D Converter Characteristics: PIC18F1220/1320 (Industrial) PIC18LF1220/1320 (Indust...
- FIGURE 22-14: A/D Conversion Timing
- TABLE 22-14: A/D Conversion Requirements
- 23.0 DC and AC Characteristics Graphs and Tables
- FIGURE 23-1: Typical Idd vs. Fosc Over Vdd PRI_RUN, EC Mode, +25˚C
- FIGURE 23-2: Maximum Idd vs. Fosc Over Vdd PRI_RUN, EC Mode, -40˚C to +85˚C
- FIGURE 23-3: Maximum Idd vs. Fosc Over Vdd PRI_RUN, EC Mode, -40˚C to +125˚C
- FIGURE 23-4: Typical Idd vs. Fosc Over Vdd PRI_RUN, EC Mode, +25˚C
- FIGURE 23-5: Maximum Idd vs. Fosc Over Vdd PRI_RUN, EC Mode, -40˚C to +125˚C
- FIGURE 23-6: Typical Idd vs. Fosc Over Vdd PRI_RUN, EC Mode, +25˚C
- FIGURE 23-7: Maximum Idd vs. Fosc Over Vdd PRI_RUN, EC Mode, -40˚C to +125˚C
- FIGURE 23-8: Typical Idd vs. Fosc Over Vdd PRI_IDLE, EC Mode, +25˚C
- FIGURE 23-9: Maximum Idd vs. Fosc Over Vdd PRI_IDLE, EC Mode, -40˚C to +85˚C
- FIGURE 23-10: Maximum Idd vs. Fosc Over Vdd PRI_IDLE, EC Mode, -40˚C to +125˚C
- FIGURE 23-11: Typical Idd vs. Fosc Over Vdd PRI_IDLE, EC Mode, +25˚C
- FIGURE 23-12: Maximum Idd vs. Fosc Over Vdd PRI_IDLE, EC Mode, -40˚C to +125˚C
- FIGURE 23-13: Typical Idd vs. Fosc Over Vdd PRI_IDLE, EC Mode, +25˚C
- FIGURE 23-14: Maximum Idd vs. Fosc Over Vdd PRI_IDLE, EC Mode, -40˚C to +125˚C
- FIGURE 23-15: Typical Ipd vs. Vdd (+25˚C), 125 kHz to 8 MHz RC_RUN Mode, All Peripherals Disabled
- FIGURE 23-16: Maximum Ipd vs. Vdd (-40˚C to +125˚C), 125 kHz to 8 MHz RC_RUN Mode, All Peripheral...
- FIGURE 23-17: Typical and Maximum Ipd vs. Vdd (-40˚C to +125˚C), 31.25 kHz RC_RUN Mode, All Perip...
- FIGURE 23-18: Typical Ipd vs. Vdd (+25˚C), 125 kHz to 8 MHz RC_IDLE Mode, All Peripherals Disabled
- FIGURE 23-19: Maximum Ipd vs. Vdd (-40˚C to +125˚C), 125 kHz to 8 MHz RC_IDLE Mode, All Periphera...
- FIGURE 23-20: Typical and Maximum Ipd vs. Vdd (-40˚C to +125˚C), 31.25 kHz RC_IDLE Mode, All Peri...
- FIGURE 23-21: Ipd SEC_RUN Mode, -10˚C to +70˚C, 32.768 kHz XTAL, 2 x 22 pF, All Peripherals Disabled
- FIGURE 23-22: Ipd SEC_IDLE Mode, -10˚C to +70˚C, 32.768 kHz, 2 x 22 pF, All Peripherals Disabled
- FIGURE 23-23: Total Ipd, -40˚C to +125˚C Sleep Mode, All Peripherals Disabled
- FIGURE 23-24: Voh vs. Ioh Over Temperature (-40˚C to +125˚C), Vdd = 3.0V
- FIGURE 23-25: Voh vs. Ioh Over Temperature (-40˚C to +125˚C), Vdd = 5.0V
- FIGURE 23-26: Vol vs. Iol Over Temperature (-40˚C to +125˚C), Vdd = 3.0V
- FIGURE 23-27: Vol vs. Iol Over Temperature (-40˚C to +125˚C), Vdd = 5.0V
- FIGURE 23-28: DIpd Timer1 Oscillator, -10˚C to +70˚C Sleep Mode, TMR1 Counter Disabled
- FIGURE 23-29: DIpd FSCM vs. Vdd Over Temperature PRI_IDLE Mode, EC Oscillator at 32 kHz, -40˚C to...
- FIGURE 23-30: DIpd WDT, -40˚C to +125˚C Sleep Mode, All Peripherals Disabled
- FIGURE 23-31: DIpd LVD vs. Vdd Sleep Mode, LVDL3:LVDL0 = 0001 (2V)
- FIGURE 23-32: DIpd BOR vs. Vdd, -40˚C to +125˚C Sleep Mode, BORV1:BORV0 = 11 (2V)
- FIGURE 23-33: DIpd A/D, -40˚C to +125˚C Sleep Mode, A/D Enabled (Not Converting)
- FIGURE 23-34: Average Fosc vs. Vdd for Various R’s External RC Mode, C = 20 pF, Temperature = +25˚C
- FIGURE 23-35: Average Fosc vs. Vdd for Various R’s External RC Mode, C = 100 pF, Temperature = +25˚C
- FIGURE 23-36: Average Fosc vs. Vdd for Various R’s External RC Mode, C = 300 pF, Temperature = +25˚C
- 24.0 Packaging Information
- Appendix A: Revision History
- Appendix B: Device Differences
- Appendix C: Conversion Considerations
- Appendix D: Migration from Baseline to Enhanced Devices
- Appendix E: Migration from Mid-Range to Enhanced Devices
- Appendix F: Migration from High-End to Enhanced Devices
- INDEX
- The Microchip Web Site
- Customer Change Notification Service
- Customer Support
- Reader Response
- PIC18F1220/1320 Product Identification System
- Worldwide Sales and Service
PIC18F1220/1320
DS39605F-page 20 © 2007 Microchip Technology Inc.
3.1.2 ENTERING POWER MANAGED
MODES
In general, entry, exit and switching between power
managed clock sources requires clock source
switching. In each case, the sequence of events is the
same.
Any change in the power managed mode begins with
loading the OSCCON register and executing a SLEEP
instruction. The SCS1:SCS0 bits select one of three
power managed clock sources; the primary clock (as
defined in Configuration Register 1H), the secondary
clock (the Timer1 oscillator) and the internal oscillator
block (used in RC modes). Modifying the SCS bits will
have no effect until a SLEEP instruction is executed.
Entry to the power managed mode is triggered by the
execution of a SLEEP instruction.
Figure 3-5 shows how the system is clocked while
switching from the primary clock to the Timer1 oscilla-
tor. When the SLEEP instruction is executed, clocks to
the device are stopped at the beginning of the next
instruction cycle. Eight clock cycles from the new clock
source are counted to synchronize with the new clock
source. After eight clock pulses from the new clock
source are counted, clocks from the new clock source
resume clocking the system. The actual length of the
pause is between eight and nine clock periods from the
new clock source. This ensures that the new clock
source is stable and that its pulse width will not be less
than the shortest pulse width of the two clock sources.
Three bits indicate the current clock source: OSTS and
IOFS in the OSCCON register and T1RUN in the
T1CON register. Only one of these bits will be set while
in a power managed mode. When the OSTS bit is set,
the primary clock is providing the system clock. When
the IOFS bit is set, the INTOSC output is providing a
stable 8 MHz clock source and is providing the system
clock. When the T1RUN bit is set, the Timer1 oscillator
is providing the system clock. If none of these bits are
set, then either the INTRC clock source is clocking the
system, or the INTOSC source is not yet stable.
If the internal oscillator block is configured as the pri-
mary clock source in Configuration Register 1H, then
both the OSTS and IOFS bits may be set when in
PRI_RUN or PRI_IDLE modes. This indicates that the
primary clock (INTOSC output) is generating a stable
8 MHz output. Entering an RC power managed mode
(same frequency) would clear the OSTS bit.
3.1.3 MULTIPLE SLEEP COMMANDS
The power managed mode that is invoked with the
SLEEP instruction is determined by the settings of the
IDLEN and SCS bits at the time the instruction is exe-
cuted. If another SLEEP instruction is executed, the
device will enter the power managed mode specified by
these same bits at that time. If the bits have changed,
the device will enter the new power managed mode
specified by the new bit settings.
3.1.4 COMPARISONS BETWEEN RUN
AND IDLE MODES
Clock source selection for the Run modes is identical to
the corresponding Idle modes. When a SLEEP instruc-
tion is executed, the SCS bits in the OSCCON register
are used to switch to a different clock source. As a
result, if there is a change of clock source at the time a
SLEEP instruction is executed, a clock switch will occur.
In Idle modes, the CPU is not clocked and is not run-
ning. In Run modes, the CPU is clocked and executing
code. This difference modifies the operation of the
WDT when it times out. In Idle modes, a WDT time-out
results in a wake from power managed modes. In Run
modes, a WDT time-out results in a WDT Reset (see
Table 3-2).
During a wake-up from an Idle mode, the CPU starts
executing code by entering the corresponding Run
mode until the primary clock becomes ready. When the
primary clock becomes ready, the clock source is auto-
matically switched to the primary clock. The IDLEN and
SCS bits are unchanged during and after the wake-up.
Figure 3-2 shows how the system is clocked during the
clock source switch. The example assumes the device
was in SEC_IDLE or SEC_RUN mode when a wake is
triggered (the primary clock was configured in HSPLL
mode).
Note 1: Caution should be used when modifying a
single IRCF bit. If V
DD is less than 3V, it is
possible to select a higher clock speed
than is supported by the low VDD.
Improper device operation may result if
the VDD/FOSC specifications are violated.
2: Executing a SLEEP instruction does not
necessarily place the device into Sleep
mode; executing a SLEEP instruction is
simply a trigger to place the controller into
a power managed mode selected by the
OSCCON register, one of which is Sleep
mode.