Datasheet
PIC16(L)F722A/723A
DS41417B-page 202 2010-2012 Microchip Technology Inc.
23.2 DC Characteristics: PIC16(L)F722A/723A-I/E (Industrial, Extended)
PIC16LF722A/723A
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C T
A +125°C for extended
PIC16F722A/723A
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C T
A +85°C for industrial
-40°C T
A +125°C for extended
Param
No.
Device
Characteristics
Min. Typ† Max. Units
Conditions
V
DD Note
Supply Current (I
DD)
(1, 2)
D009
LDO Regulator
— 350 — A — HS, EC OR INTOSC/INTOSCIO (8-16 MHZ)
Clock modes with all V
CAP pins disabled
— 50 — A — All VCAP pins disabled
— 30 — A — VCAP enabled on RA0, RA5 or RA6
— 5 — A — LP Clock mode and Sleep (requires FVR and
BOR to be disabled)
D010 — 7.0 12 A1.8F
OSC = 32 kHz
LP Oscillator mode (Note 4),
-40°C T
A +85°C
—9.0 14 A3.0
D010 — 11 20 A 1.8 FOSC = 32 kHz
LP Oscillator mode (Note 4),
-40°C T
A +85°C
— 14 22 A 3.0
— 15 24 A 5.0
D011 — 7.0 12 A1.8
F
OSC = 32 kHz
LP Oscillator mode
-40°C T
A +125°C
—9.0 18 A3.0
D011 — 11 21 A 1.8
FOSC = 32 kHz
LP Oscillator mode (Note 4)
-40°C T
A +125°C
— 14 25 A 3.0
— 15 27 A 5.0
D011 — 110 150 A1.8F
OSC = 1 MHz
XT Oscillator mode
— 150 215 A3.0
D011 — 120 175 A 1.8 FOSC = 1 MHz
XT Oscillator mode (Note 5)
— 180 250 A 3.0
— 240 300 A 5.0
D012 — 230 300 A1.8F
OSC = 4 MHz
XT Oscillator mode
— 400 600 A3.0
D012 — 250 350 A 1.8 FOSC = 4 MHz
XT Oscillator mode (Note 5)
— 420 650 A 3.0
— 500 750 A 5.0
D013 — 125 180 A1.8F
OSC = 1 MHz
EC Oscillator mode
— 230 270 A3.0
D013 — 150 205 A 1.8 FOSC = 1 MHz
EC Oscillator mode (Note 5)
— 225 320 A 3.0
— 250 410 A 5.0
Note 1: The test conditions for all I
DD measurements in active operation mode are: OSC1 = external square wave, from
rail-to-rail; all I/O pins tri-stated, pulled to V
DD; MCLR = VDD; WDT disabled.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current
consumption.
3: For RC oscillator configurations, current through R
EXT is not included. The current through the resistor can be extended
by the formula I
R = VDD/2REXT (mA) with REXT in k
4: FVR and BOR are disabled.
5: 0.1 F capacitor on V
CAP (RA0).