Datasheet

2011-2013 Microchip Technology Inc. DS40001574C-page 171
PIC16(L)F1938/9
18.2 Comparator Control
Each comparator has two control registers: CMxCON0
and CMxCON1.
The CMxCON0 registers (see Register 18-1) contain
Control and Status bits for the following:
Enable
•Output selection
Output polarity
Speed/Power selection
Hysteresis enable
Output synchronization
The CMxCON1 registers (see Register 18-2) contain
Control bits for the following:
Interrupt enable
Interrupt edge polarity
Positive input channel selection
Negative input channel selection
18.2.1 COMPARATOR ENABLE
Setting the CxON bit of the CMxCON0 register enables
the comparator for operation. Clearing the CxON bit
disables the comparator resulting in minimum current
consumption.
18.2.2 COMPARATOR OUTPUT
SELECTION
The output of the comparator can be monitored by
reading either the CxOUT bit of the CMxCON0 register
or the MCxOUT bit of the CMOUT register. In order to
make the output available for an external connection,
the following conditions must be true:
CxOE bit of the CMxCON0 register must be set
Corresponding TRIS bit must be cleared
CxON bit of the CMxCON0 register must be set
18.2.3 COMPARATOR OUTPUT POLARITY
Inverting the output of the comparator is functionally
equivalent to swapping the comparator inputs. The
polarity of the comparator output can be inverted by
setting the CxPOL bit of the CMxCON0 register.
Clearing the CxPOL bit results in a non-inverted output.
Table 18-1 shows the output state versus input
conditions, including polarity control.
18.2.4 COMPARATOR SPEED/POWER
SELECTION
The trade-off between speed or power can be opti-
mized during program execution with the CxSP control
bit. The default state for this bit is ‘1 which selects the
Normal speed mode. Device power consumption can
be optimized at the cost of slower comparator propaga-
tion delay by clearing the CxSP bit to ‘0’.
Note 1: The CxOE bit of the CMxCON0 register
overrides the PORT data latch. Setting
the CxON bit of the CMxCON0 register
has no impact on the port override.
2: The internal output of the comparator is
latched with each instruction cycle.
Unless otherwise specified, external
outputs are not latched.
TABLE 18-1: COMPARATOR OUTPUT
STATE VS. INPUT
CONDITIONS
Input Condition CxPOL CxOUT
CxVN > CxVP 00
CxV
N < CxVP 01
CxV
N > CxVP 11
CxV
N < CxVP 10