Datasheet
Table Of Contents
- Device Included In This Data Sheet:
- High-Performance RISC CPU:
- Special Microcontroller Features:
- Low-Power Features/CMOS Technology:
- Peripheral Features:
- 6-Lead SOT-23 Pin Diagram
- 8-Lead DIP Pin Diagram
- 8-Lead DFN Pin Diagram
- Table of Contents
- Most Current Data Sheet
- Errata
- Customer Notification System
- 1.0 General Description
- 2.0 Device Varieties
- 3.0 Architectural Overview
- 4.0 Memory Organization
- 5.0 I/O Port
- 5.1 GPIO
- 5.2 TRIS Registers
- 5.3 I/O Interfacing
- FIGURE 5-1: Equivalent Circuit for a Single I/O Pin
- TABLE 5-1: Order of Precedence for Pin Functions
- TABLE 5-2: Requirements to Make Pins Available in Digital Mode
- FIGURE 5-2: Block Diagram of GP0 and GP1
- FIGURE 5-3: Block Diagram of GP2
- FIGURE 5-4: Block Diagram of GP3
- TABLE 5-3: Summary of Port Registers
- 5.4 I/O Programming Considerations
- 6.0 TMR0 Module and TMR0 Register
- 7.0 Analog-to-Digital (A/D) converter
- 8.0 Special Features Of The CPU
- 8.1 Configuration Bits
- 8.2 Oscillator Configurations
- 8.3 Reset
- 8.4 Power-on Reset (POR)
- 8.5 Device Reset Timer (DRT)
- 8.6 Watchdog Timer (WDT)
- 8.7 Time-out Sequence, Power-down and Wake-up from Sleep Status Bits (TO/PD/GPWUF/CWUF)
- 8.8 Reset on Brown-out
- 8.9 Power-down Mode (Sleep)
- 8.10 Program Verification/Code Protection
- 8.11 ID Locations
- 8.12 In-Circuit Serial Programming™
- 9.0 Instruction Set Summary
- 10.0 Electrical Characteristics
- Absolute Maximum Ratings(†)
- 10.1 DC Characteristics: PIC10F220/222 (Industrial)
- 10.2 DC Characteristics: PIC10F220/222 (Extended)
- 10.3 DC Characteristics: PIC10F220/222 (Industrial, Extended)
- 10.4 Timing Parameter Symbology and Load Conditions
- FIGURE 10-2: Load Conditions
- TABLE 10-2: Calibrated Internal RC Frequencies – PIC10F220/222
- FIGURE 10-3: Reset, Watchdog Timer and Device Reset Timer Timing
- TABLE 10-3: Reset, Watchdog Timer and Device Reset Timer – PIC10F220/222
- FIGURE 10-4: Timer0 Clock Timings
- TABLE 10-4: Timer0 Clock Requirements
- TABLE 10-5: A/D Converter Characteristics
- TABLE 10-6: A/D Conversion Requirements
- 11.0 DC and AC Characteristics Graphs and Tables.
- FIGURE 11-1: Idd vs. Vdd Over Fosc (4 MHz)
- FIGURE 11-2: Idd vs. Vdd Over Fosc (8 MHz)
- FIGURE 11-3: Typical Ipd vs. Vdd (Sleep Mode, all Peripherals Disabled)
- FIGURE 11-4: Maximum Ipd vs. Vdd (Sleep Mode, all Peripherals Disabled)
- FIGURE 11-5: Typical WDT Ipd VS. Vdd
- FIGURE 11-6: Maximum WDT Ipd VS. Vdd Over Temperature
- FIGURE 11-7: WDT TIME-OUT VS. Vdd Over Temperature (No Prescaler)
- FIGURE 11-8: Vol VS. Iol Over Temperature (Vdd = 3.0V)
- FIGURE 11-9: Vol VS. Iol Over Temperature (Vdd = 5.0V)
- FIGURE 11-10: Voh VS. Ioh Over Temperature (Vdd = 3.0V)
- FIGURE 11-11: Voh VS. Ioh Over Temperature (Vdd = 5.0V)
- FIGURE 11-12: TTL Input Threshold Vin VS. Vdd
- FIGURE 11-13: Schmitt Trigger Input Threshold Vin VS. Vdd
- 12.0 Development Support
- 12.1 MPLAB Integrated Development Environment Software
- 12.2 MPASM Assembler
- 12.3 MPLAB C18 and MPLAB C30 C Compilers
- 12.4 MPLINK Object Linker/ MPLIB Object Librarian
- 12.5 MPLAB ASM30 Assembler, Linker and Librarian
- 12.6 MPLAB SIM Software Simulator
- 12.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator
- 12.8 MPLAB REAL ICE In-Circuit Emulator System
- 12.9 MPLAB ICD 2 In-Circuit Debugger
- 12.10 MPLAB PM3 Device Programmer
- 12.11 PICSTART Plus Development Programmer
- 12.12 PICkit 2 Development Programmer
- 12.13 Demonstration, Development and Evaluation Boards
- 13.0 Packaging Information
- Appendix A: Revision History
- INDEX
- The Microchip Web Site
- Customer Change Notification Service
- Customer Support
- Reader Response
- Product Identification System

PIC10F220/222
DS41270E-page 60 © 2007 Microchip Technology Inc.
TABLE 10-5: A/D CONVERTER CHARACTERISTICS
TABLE 10-6: A/D CONVERSION REQUIREMENTS
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C ≤ T
A ≤ +125°C
Param
No.
Sym Characteristic Min Typ† Max Units Conditions
A01 N
R Resolution — — 8 bits bit
A03 EIL Integral Error — — ±1.5 LSb
A04 EDL Differential Error — — -1 < EDL ≤ + 1.5 LSb
A05 E
FS Full-scale Range 2.0* — 5.5* V
A06 EOFF Offset Error — — ±1.5 LSb
A07 EGN Gain Error — — ±1.5 LSb
A10 — Monotonicity — guaranteed
(1)
——VSS ≤ VAIN ≤ VDD
A25 VAIN Analog Input Voltage VSS —VDD V
A30 ZAIN Recommended
Impedence of Analog
Voltage Source
—— 10 kΩ
A31* ΔIAD A/D Conversion Current
(2)
— 120 150 μA2.0V
— 200 250 μA5.0V
* These parameters are characterized but not tested.
† Data in the “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design
guidance only are not tested.
Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing
codes.
2: This is the additional current consumed by the A/D module when it is enabled; this current adds to base
I
DD.
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C ≤ T
A ≤ +125°C
Param
No.
Sym Characteristic Min Typ† Max Units Conditions
AD131 T
CNV Conversion Time
(not including
Acquisition Time)
—13—T
CY Set GO/DONE bit to new data in A/D
Result register
AD132* T
ACQ Acquisition Time
(1)
—3.5
5
— μs
μs
VDD = 5V
V
DD = 2.5V
* These parameters are characterized but not tested.
† Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance
only and are not tested.
Note 1: The Section 7.9 “A/D Acquisition Requirements” for information on how to compute minimum
acquisition times based on operating conditions.