Datasheet
Table Of Contents
- Device Included In This Data Sheet:
- High-Performance RISC CPU:
- Special Microcontroller Features:
- Low-Power Features/CMOS Technology:
- Peripheral Features:
- 6-Lead SOT-23 Pin Diagram
- 8-Lead DIP Pin Diagram
- 8-Lead DFN Pin Diagram
- Table of Contents
- Most Current Data Sheet
- Errata
- Customer Notification System
- 1.0 General Description
- 2.0 Device Varieties
- 3.0 Architectural Overview
- 4.0 Memory Organization
- 5.0 I/O Port
- 5.1 GPIO
- 5.2 TRIS Registers
- 5.3 I/O Interfacing
- FIGURE 5-1: Equivalent Circuit for a Single I/O Pin
- TABLE 5-1: Order of Precedence for Pin Functions
- TABLE 5-2: Requirements to Make Pins Available in Digital Mode
- FIGURE 5-2: Block Diagram of GP0 and GP1
- FIGURE 5-3: Block Diagram of GP2
- FIGURE 5-4: Block Diagram of GP3
- TABLE 5-3: Summary of Port Registers
- 5.4 I/O Programming Considerations
- 6.0 TMR0 Module and TMR0 Register
- 7.0 Analog-to-Digital (A/D) converter
- 8.0 Special Features Of The CPU
- 8.1 Configuration Bits
- 8.2 Oscillator Configurations
- 8.3 Reset
- 8.4 Power-on Reset (POR)
- 8.5 Device Reset Timer (DRT)
- 8.6 Watchdog Timer (WDT)
- 8.7 Time-out Sequence, Power-down and Wake-up from Sleep Status Bits (TO/PD/GPWUF/CWUF)
- 8.8 Reset on Brown-out
- 8.9 Power-down Mode (Sleep)
- 8.10 Program Verification/Code Protection
- 8.11 ID Locations
- 8.12 In-Circuit Serial Programming™
- 9.0 Instruction Set Summary
- 10.0 Electrical Characteristics
- Absolute Maximum Ratings(†)
- 10.1 DC Characteristics: PIC10F220/222 (Industrial)
- 10.2 DC Characteristics: PIC10F220/222 (Extended)
- 10.3 DC Characteristics: PIC10F220/222 (Industrial, Extended)
- 10.4 Timing Parameter Symbology and Load Conditions
- FIGURE 10-2: Load Conditions
- TABLE 10-2: Calibrated Internal RC Frequencies – PIC10F220/222
- FIGURE 10-3: Reset, Watchdog Timer and Device Reset Timer Timing
- TABLE 10-3: Reset, Watchdog Timer and Device Reset Timer – PIC10F220/222
- FIGURE 10-4: Timer0 Clock Timings
- TABLE 10-4: Timer0 Clock Requirements
- TABLE 10-5: A/D Converter Characteristics
- TABLE 10-6: A/D Conversion Requirements
- 11.0 DC and AC Characteristics Graphs and Tables.
- FIGURE 11-1: Idd vs. Vdd Over Fosc (4 MHz)
- FIGURE 11-2: Idd vs. Vdd Over Fosc (8 MHz)
- FIGURE 11-3: Typical Ipd vs. Vdd (Sleep Mode, all Peripherals Disabled)
- FIGURE 11-4: Maximum Ipd vs. Vdd (Sleep Mode, all Peripherals Disabled)
- FIGURE 11-5: Typical WDT Ipd VS. Vdd
- FIGURE 11-6: Maximum WDT Ipd VS. Vdd Over Temperature
- FIGURE 11-7: WDT TIME-OUT VS. Vdd Over Temperature (No Prescaler)
- FIGURE 11-8: Vol VS. Iol Over Temperature (Vdd = 3.0V)
- FIGURE 11-9: Vol VS. Iol Over Temperature (Vdd = 5.0V)
- FIGURE 11-10: Voh VS. Ioh Over Temperature (Vdd = 3.0V)
- FIGURE 11-11: Voh VS. Ioh Over Temperature (Vdd = 5.0V)
- FIGURE 11-12: TTL Input Threshold Vin VS. Vdd
- FIGURE 11-13: Schmitt Trigger Input Threshold Vin VS. Vdd
- 12.0 Development Support
- 12.1 MPLAB Integrated Development Environment Software
- 12.2 MPASM Assembler
- 12.3 MPLAB C18 and MPLAB C30 C Compilers
- 12.4 MPLINK Object Linker/ MPLIB Object Librarian
- 12.5 MPLAB ASM30 Assembler, Linker and Librarian
- 12.6 MPLAB SIM Software Simulator
- 12.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator
- 12.8 MPLAB REAL ICE In-Circuit Emulator System
- 12.9 MPLAB ICD 2 In-Circuit Debugger
- 12.10 MPLAB PM3 Device Programmer
- 12.11 PICSTART Plus Development Programmer
- 12.12 PICkit 2 Development Programmer
- 12.13 Demonstration, Development and Evaluation Boards
- 13.0 Packaging Information
- Appendix A: Revision History
- INDEX
- The Microchip Web Site
- Customer Change Notification Service
- Customer Support
- Reader Response
- Product Identification System

© 2007 Microchip Technology Inc. DS41270E-page 53
PIC10F220/222
10.1 DC Characteristics: PIC10F220/222 (Industrial)
DC CHARACTERISTICS
Standard Operating Conditions (unless otherwise specified)
Operating Temperature -40×C ≤ T
A ≤ +85°C (industrial)
Param
No.
Sym Characteristic Min Typ
(1)
Max Units Conditions
D001 V
DD Supply Voltage 2.0 5.5 V See Figure 10-1
D002 V
DR RAM Data Retention Voltage
(2)
1.5* — — V Device in Sleep mode
D003 V
POR VDD Start Voltage
to ensure Power-on Reset
— Vss— V
D004 S
VDD VDD Rise Rate
to ensure Power-on Reset
0.05* — — V/ms
I
DD Supply Current
(3)
D010 —
—
—
—
175
0.625
250
0.800
275
1.1
400
1.5
μA
mA
μA
mA
VDD = 2.0V, Fosc = 4 MHz
V
DD = 5.0V, Fosc = 4 MHz
V
DD = 2.0V, Fosc = 8 MHz
V
DD = 5.0V, Fosc = 8 MHz
I
PD Power-down Current
(4)
D020 —
—
0.1
1
1.2
2.4
μA
μA
VDD = 2.0V
V
DD = 5.0V
I
WDT WDT Current
(4)
D022 —
—
1.0
7
3
16
μA
μA
VDD = 2.0V
V
DD = 5.0V
* These parameters are characterized but not tested.
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance only
and is not tested.
2: This is the limit to which V
DD can be lowered in Sleep mode without losing RAM data.
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, bus
rate, internal code execution pattern and temperature also have an impact on the current consumption.
a) The test conditions for all I
DD measurements in active operation mode are:
All I/O pins tri-stated, pulled to V
SS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
b) For standby current measurements, the conditions are the same, except that the device is in Sleep mode.
4: Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to V
DD
or V
SS. The peripheral current is the sum of the base IPD and the additional current consumed when the peripheral is
enabled.