Datasheet
Table Of Contents
- Device Included In This Data Sheet:
- High-Performance RISC CPU:
- Special Microcontroller Features:
- Low-Power Features/CMOS Technology:
- Peripheral Features:
- 6-Lead SOT-23 Pin Diagram
- 8-Lead DIP Pin Diagram
- 8-Lead DFN Pin Diagram
- Table of Contents
- Most Current Data Sheet
- Errata
- Customer Notification System
- 1.0 General Description
- 2.0 Device Varieties
- 3.0 Architectural Overview
- 4.0 Memory Organization
- 5.0 I/O Port
- 5.1 GPIO
- 5.2 TRIS Registers
- 5.3 I/O Interfacing
- FIGURE 5-1: Equivalent Circuit for a Single I/O Pin
- TABLE 5-1: Order of Precedence for Pin Functions
- TABLE 5-2: Requirements to Make Pins Available in Digital Mode
- FIGURE 5-2: Block Diagram of GP0 and GP1
- FIGURE 5-3: Block Diagram of GP2
- FIGURE 5-4: Block Diagram of GP3
- TABLE 5-3: Summary of Port Registers
- 5.4 I/O Programming Considerations
- 6.0 TMR0 Module and TMR0 Register
- 7.0 Analog-to-Digital (A/D) converter
- 8.0 Special Features Of The CPU
- 8.1 Configuration Bits
- 8.2 Oscillator Configurations
- 8.3 Reset
- 8.4 Power-on Reset (POR)
- 8.5 Device Reset Timer (DRT)
- 8.6 Watchdog Timer (WDT)
- 8.7 Time-out Sequence, Power-down and Wake-up from Sleep Status Bits (TO/PD/GPWUF/CWUF)
- 8.8 Reset on Brown-out
- 8.9 Power-down Mode (Sleep)
- 8.10 Program Verification/Code Protection
- 8.11 ID Locations
- 8.12 In-Circuit Serial Programming™
- 9.0 Instruction Set Summary
- 10.0 Electrical Characteristics
- Absolute Maximum Ratings(†)
- 10.1 DC Characteristics: PIC10F220/222 (Industrial)
- 10.2 DC Characteristics: PIC10F220/222 (Extended)
- 10.3 DC Characteristics: PIC10F220/222 (Industrial, Extended)
- 10.4 Timing Parameter Symbology and Load Conditions
- FIGURE 10-2: Load Conditions
- TABLE 10-2: Calibrated Internal RC Frequencies – PIC10F220/222
- FIGURE 10-3: Reset, Watchdog Timer and Device Reset Timer Timing
- TABLE 10-3: Reset, Watchdog Timer and Device Reset Timer – PIC10F220/222
- FIGURE 10-4: Timer0 Clock Timings
- TABLE 10-4: Timer0 Clock Requirements
- TABLE 10-5: A/D Converter Characteristics
- TABLE 10-6: A/D Conversion Requirements
- 11.0 DC and AC Characteristics Graphs and Tables.
- FIGURE 11-1: Idd vs. Vdd Over Fosc (4 MHz)
- FIGURE 11-2: Idd vs. Vdd Over Fosc (8 MHz)
- FIGURE 11-3: Typical Ipd vs. Vdd (Sleep Mode, all Peripherals Disabled)
- FIGURE 11-4: Maximum Ipd vs. Vdd (Sleep Mode, all Peripherals Disabled)
- FIGURE 11-5: Typical WDT Ipd VS. Vdd
- FIGURE 11-6: Maximum WDT Ipd VS. Vdd Over Temperature
- FIGURE 11-7: WDT TIME-OUT VS. Vdd Over Temperature (No Prescaler)
- FIGURE 11-8: Vol VS. Iol Over Temperature (Vdd = 3.0V)
- FIGURE 11-9: Vol VS. Iol Over Temperature (Vdd = 5.0V)
- FIGURE 11-10: Voh VS. Ioh Over Temperature (Vdd = 3.0V)
- FIGURE 11-11: Voh VS. Ioh Over Temperature (Vdd = 5.0V)
- FIGURE 11-12: TTL Input Threshold Vin VS. Vdd
- FIGURE 11-13: Schmitt Trigger Input Threshold Vin VS. Vdd
- 12.0 Development Support
- 12.1 MPLAB Integrated Development Environment Software
- 12.2 MPASM Assembler
- 12.3 MPLAB C18 and MPLAB C30 C Compilers
- 12.4 MPLINK Object Linker/ MPLIB Object Librarian
- 12.5 MPLAB ASM30 Assembler, Linker and Librarian
- 12.6 MPLAB SIM Software Simulator
- 12.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator
- 12.8 MPLAB REAL ICE In-Circuit Emulator System
- 12.9 MPLAB ICD 2 In-Circuit Debugger
- 12.10 MPLAB PM3 Device Programmer
- 12.11 PICSTART Plus Development Programmer
- 12.12 PICkit 2 Development Programmer
- 12.13 Demonstration, Development and Evaluation Boards
- 13.0 Packaging Information
- Appendix A: Revision History
- INDEX
- The Microchip Web Site
- Customer Change Notification Service
- Customer Support
- Reader Response
- Product Identification System

© 2007 Microchip Technology Inc. DS41270E-page 11
PIC10F220/222
3.1 Clocking Scheme/Instruction
Cycle
The clock is internally divided by four to generate four
non-overlapping quadrature clocks, namely Q1, Q2,
Q3 and Q4. Internally, the PC is incremented every Q1,
and the instruction is fetched from program memory
and latched into the Instruction Register (IR) in Q4. It is
decoded and executed during Q1 through Q4. The
clocks and instruction execution flow is shown in
Figure 3-2 and Example 3-1.
3.2 Instruction Flow/Pipelining
An instruction cycle consists of four Q cycles (Q1, Q2,
Q3 and Q4). The instruction fetch and execute are
pipelined such that fetch takes one instruction cycle,
while decode and execute takes another instruction
cycle. However, due to the pipelining, each instruction
effectively executes in one cycle. If an instruction
causes the PC to change (e.g., GOTO) then two cycles
are required to complete the instruction (Example 3-1).
A fetch cycle begins with the PC incrementing in Q1.
In the execution cycle, the fetched instruction is latched
into the Instruction Register in cycle Q1. This instruc-
tion is then decoded and executed during the Q2, Q3
and Q4 cycles. Data memory is read during Q2
(operand read) and written during Q4 (destination
write).
FIGURE 3-2: CLOCK/INSTRUCTION CYCLE
EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW
Q1
Q2 Q3 Q4
Q1
Q2 Q3 Q4
Q1
Q2 Q3 Q4
OSC1
Q1
Q2
Q3
Q4
PC
PC PC + 1 PC + 2
Fetch INST (PC)
Execute INST (PC - 1)
Fetch INST (PC + 1)
Execute INST (PC)
Fetch INST (PC + 2)
Execute INST (PC + 1)
Internal
phase
clock
All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction
is “flushed” from the pipeline, while the new instruction is being fetched and then executed.
1. MOVLW 03H
Fetch 1 Execute 1
2. MOVWF GPIO
Fetch 2 Execute 2
3. CALL SUB_1
Fetch 3 Execute 3
4. BSF GPIO, BIT1
Fetch 4 Flush
Fetch SUB_1 Execute SUB_1