Datasheet
Table Of Contents
- 1.0 Electrical Characteristics
- 2.0 Typical Performance Curves
- FIGURE 2-1: Input Offset Voltage vs. Common Mode Input Voltage at VDD = 2.4V.
- FIGURE 2-2: Input Offset Voltage vs. Common Mode Input Voltage at VDD = 5.5V.
- FIGURE 2-3: Input Offset Voltage vs. Output Voltage.
- FIGURE 2-4: Input Common Mode Range Voltage vs. Ambient Temperature.
- FIGURE 2-5: CMRR, PSRR vs. Ambient Temperature.
- FIGURE 2-6: CMRR, PSRR vs. Frequency.
- FIGURE 2-7: Measured Input Current vs. Input Voltage (below VSS).
- FIGURE 2-8: Open-Loop Gain, Phase vs. Frequency.
- FIGURE 2-9: Input Noise Voltage Density vs. Frequency.
- FIGURE 2-10: The MCP6L91/1R/2/4 Show No Phase Reversal.
- FIGURE 2-11: Quiescent Current vs. Power Supply Voltage.
- FIGURE 2-12: Output Short Circuit Current vs. Power Supply Voltage.
- FIGURE 2-13: Ratio of Output Voltage Headroom to Output Current vs. Output Current.
- FIGURE 2-14: Small Signal, Noninverting Pulse Response.
- FIGURE 2-15: Large Signal, Noninverting Pulse Response.
- FIGURE 2-16: Slew Rate vs. Ambient Temperature.
- FIGURE 2-17: Output Voltage Swing vs. Frequency.
- 3.0 Pin Descriptions
- 4.0 Application Information
- 5.0 Design Aids
- 6.0 Packaging Information
- Appendix A: Revision History
- Product ID System
- Trademarks
- Worldwide Sales

2009-2011 Microchip Technology Inc. DS22141B-page 13
MCP6L91/1R/2/4
5.0 DESIGN AIDS
Microchip provides the basic design aids needed for
the MCP6L91/1R/2/4 family of op amps.
5.1 SPICE Macro Model
The latest SPICE macro model for the MCP6L91/1R/2/4
op amp is available on the Microchip web site at
www.microchip.com. The model was written and tested
in official Orcad (Cadence) owned PSPICE. For other
simulators, translation may be required.
The model covers a wide aspect of the op amp's
electrical specifications. Not only does the model cover
voltage, current, and resistance of the op amp, but it
also covers the temperature and noise effects on the
behavior of the op amp. The model has not been
verified outside of the specification range listed in the
op amp data sheet. The model behaviors under these
conditions cannot be ensured to match the actual op
amp performance.
Moreover, the model is intended to be an initial design
tool. Bench testing is a very important part of any
design and cannot be replaced with simulations. Also,
simulation results using this macro model need to be
validated by comparing them to the data sheet specifi-
cations and characteristic curves.
5.2 FilterLab
®
Software
Microchip’s FilterLab
®
software is an innovative
software tool that simplifies analog active filter (using
op amps) design. Available at no cost from the Micro-
chip web site at www.microchip.com/filterlab, the Filter-
Lab design tool provides full schematic diagrams of the
filter circuit with component values. It also outputs the
filter circuit in SPICE format, which can be used with
the macro model to simulate actual filter performance.
5.3 Microchip Advanced Part Selector
(MAPS)
MAPS is a software tool that helps efficiently identify
Microchip devices that fit a particular design require-
ment. Available at no cost from the Microchip web site
at www.microchip.com/maps, the MAPS is an overall
selection tool for Microchip’s product portfolio that
includes Analog, Memory, MCUs and DSCs. Using this
tool, a customer can define a filter to sort features for a
parametric search of devices and export side-by-side
technical comparison reports. Helpful links are also
provided for data sheets, purchase and sampling of
Microchip parts.
5.4 Analog Demonstration and
Evaluation Boards
Microchip offers a broad spectrum of Analog Demon-
stration and Evaluation Boards that are designed to
help customers achieve faster time to market. For a
complete listing of these boards and their correspond-
ing user’s guides and technical information, visit the
Microchip web site at www.microchip.com/analog
tools.
Some boards that are especially useful are:
• MCP6XXX Amplifier Evaluation Board 1
• MCP6XXX Amplifier Evaluation Board 2
• MCP6XXX Amplifier Evaluation Board 3
• MCP6XXX Amplifier Evaluation Board 4
• Active Filter Demo Board Kit
• 5/6-Pin SOT-23 Evaluation Board, P/N VSUPEV2
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,
P/N SOIC8EV
• 14-Pin SOIC/TSSOP/DIP Evaluation Board,
P/N SOIC14EV
5.5 Application Notes
The following Microchip Application Notes are
available on the Microchip web site at www.microchip.
com/appnotes and are recommended as supplemental
reference resources.
• ADN003: “Select the Right Operational Amplifier
for your Filtering Circuits”, DS21821
• AN722: “Operational Amplifier Topologies and DC
Specifications”, DS00722
• AN723: “Operational Amplifier AC Specifications
and Applications”, DS00723
• AN884: “Driving Capacitive Loads With Op
Amps”, DS00884
• AN990: “Analog Sensor Conditioning Circuits –
An Overview”, DS00990