Datasheet
Table Of Contents
- 1.0 Electrical Characteristics
- 2.0 Typical Performance Curves
- FIGURE 2-1: Input Offset Voltage.
- FIGURE 2-2: Input Bias Current at TA = +85˚C.
- FIGURE 2-3: Input Offset Voltage vs. Common Mode Input Voltage, with VDD = 2.0V.
- FIGURE 2-4: Input Offset Voltage Drift.
- FIGURE 2-5: Input Bias Current at TA = +125˚C.
- FIGURE 2-6: Input Offset Voltage vs. Common Mode Input Voltage, with VDD = 5.5V.
- FIGURE 2-7: Common Mode Input Voltage Range Lower Limit vs. Temperature.
- FIGURE 2-8: Input Offset Voltage vs. Output Voltage.
- FIGURE 2-9: CMRR, PSRR vs. Frequency.
- FIGURE 2-10: Common Mode Input Voltage Range Upper Limit vs. Temperature.
- FIGURE 2-11: Input Bias, Input Offset Currents vs. Temperature.
- FIGURE 2-12: CMRR, PSRR vs. Temperature.
- FIGURE 2-13: Input Bias, Offset Currents vs. Common Mode Input Voltage, with TA = +85˚C.
- FIGURE 2-14: Quiescent Current vs. Supply Voltage.
- FIGURE 2-15: Open-Loop Gain, Phase vs. Frequency.
- FIGURE 2-16: Input Bias, Offset Currents vs. Common Mode Input Voltage, with TA = +125˚C.
- FIGURE 2-17: Output Voltage Headroom vs. Output Current Magnitude.
- FIGURE 2-18: Gain Bandwidth Product, Phase Margin vs. Temperature.
- FIGURE 2-19: Maximum Output Voltage Swing vs. Frequency.
- FIGURE 2-20: Input Noise Voltage Density vs. Frequency.
- FIGURE 2-21: Output Short Circuit Current vs. Supply Voltage.
- FIGURE 2-22: Slew Rate vs. Temperature.
- FIGURE 2-23: Input Noise Voltage Density vs. Common Mode Input Voltage, with f = 1 kHz.
- FIGURE 2-24: Channel-to-Channel Separation vs. Frequency (MCP6272 and MCP6274).
- FIGURE 2-25: Quiescent Current vs. Chip Select (CS) Voltage, with VDD = 2.0V (MCP6273 and MCP6275 only).
- FIGURE 2-26: Large Signal Non-inverting Pulse Response.
- FIGURE 2-27: Small Signal Non-inverting Pulse Response.
- FIGURE 2-28: Quiescent Current vs. Chip Select (CS) Voltage, with VDD = 5.5V (MCP6273 and MCP6275 only).
- FIGURE 2-29: Large Signal Inverting Pulse Response.
- FIGURE 2-30: Small Signal Inverting Pulse Response.
- FIGURE 2-31: Chip Select (CS) to Amplifier Output Response Time, with VDD = 2.0V (MCP6273 and MCP6275 only).
- FIGURE 2-32: Input Current vs. Input Voltage.
- FIGURE 2-33: Chip Select (CS) to Amplifier Output Response Time, with VDD = 5,5V (MCP6273 and MCP6275 only).
- FIGURE 2-34: The MCP6271/1R/2/3/4/5 Show no Phase Reversal.
- 3.0 Pin Descriptions
- 4.0 Application Information
- 4.1 Rail-to-Rail Inputs
- 4.2 Rail-to-Rail Output
- 4.3 Capacitive Loads
- 4.4 MCP6273/5 Chip Select
- 4.5 Cascaded Dual Op Amps (MCP6275)
- 4.6 Unused Amplifiers
- 4.7 Supply Bypass
- 4.8 PCB Surface Leakage
- 4.9 Application Circuits
- FIGURE 4-8: Active Full-wave Rectifier.
- FIGURE 4-9: Non-Inverting Integrator.
- FIGURE 4-10: Isolating the Load with a Buffer.
- FIGURE 4-11: Cascaded Gain Circuit Configuration.
- FIGURE 4-12: Difference Amplifier Circuit.
- FIGURE 4-13: Integrator Circuit with Active Compensation.
- FIGURE 4-14: Second Order Multiple Feedback Low-Pass Filter with an Extra Pole- Zero Pair.
- FIGURE 4-15: Second Order Sallen-Key Low-Pass Filter with an Extra Pole-Zero Pair and Chip Select.
- FIGURE 4-16: Capacitorless Second Order Low-Pass Filter with Chip Select.
- 5.0 Design Tools
- 6.0 Packaging Information
© 2008 Microchip Technology Inc. DS21810F-page 19
MCP6271/1R/2/3/4/5
5.0 DESIGN TOOLS
Microchip provides the basic design tools needed for
the MCP6271/1R/2/3/4/5 family of op amps.
5.1 SPICE Macro Model
The latest SPICE macro model for the MCP6271/1R/2/
3/4/5 op amps is available on the Microchip web site at
www.microchip.com. This model is intended to be an
initial design tool that works well in the op amp’s linear
region of operation over the temperature range. See
the model file for information on its capabilities.
Bench testing is a very important part of any design and
cannot be replaced with simulations. Also, simulation
results using this macro model need to be validated by
comparing them to the data sheet specifications and
characteristic curves.
5.2 FilterLab
®
Software
Microchip’s FilterLab
®
software is an innovative
software tool that simplifies analog active filter (using
op amps) design. Available at no cost from the
Microchip web site at www.microchip.com/filterlab, the
FilterLab design tool provides full schematic diagrams
of the filter circuit with component values. It also
outputs the filter circuit in SPICE format, which can be
used with the macro model to simulate actual filter
performance.
5.3 Mindi™ Circuit Designer &
Simulator
Microchip’s Mindi™ Circuit Designer & Simulator aids
in the design of various circuits useful for active filter,
amplifier and power-management applications. It is a
free online circuit designer & simulator available from
the Microchip web site at www.microchip.com/mindi.
This interactive circuit designer & simulator enables
designers to quickly generate circuit diagrams,
simulate circuits. Circuits developed using the Mindi
Circuit Designer & Simulator can be downloaded to a
personal computer or workstation.
5.4 MAPS (Microchip Advanced Part
Selector)
MAPS is a software tool that helps semiconductor
professionals efficiently identify Microchip devices that
fit a particular design requirement. Available at no cost
from the Microchip web site at www.microchip.com/
maps, the MAPS is an overall selection tool for
Microchip’s product portfolio that includes Analog,
Memory, MCUs and DSCs. Using this tool you can
define a filter to sort features for a parametric search of
devices and export side-by-side technical comparison
reports. Helpful links are also provided for Data sheets,
Purchase, and Sampling of Microchip parts.
5.5 Analog Demonstration and
Evaluation Boards
Microchip offers a broad spectrum of Analog
Demonstration and Evaluation Boards that are
designed to help you achieve faster time to market. For
a complete listing of these boards and their
corresponding user’s guides and technical information,
visit the Microchip web site at www.microchip.com/
analogtools.
Two of our boards that are especially useful are:
• P/N SOIC8EV: 8-Pin SOIC/MSOP/TSSOP/DIP
Evaluation Board
• P/N SOIC14EV: 14-Pin SOIC/TSSOP/DIP Evalu-
ation Board
5.6 Application Notes
The following Microchip Application Notes are avail-
able on the Microchip web site at www.microchip. com/
appnotes and are recommended as supplemental ref-
erence resources.
ADN003: “Select the Right Operational Amplifier for
your Filtering Circuits”, DS21821
AN722: “Operational Amplifier Topologies and DC
Specifications”, DS00722
AN723: “Operational Amplifier AC Specifications and
Applications”, DS00723
AN884: “Driving Capacitive Loads With Op Amps”,
DS00884
AN990: “Analog Sensor Conditioning Circuits – An
Overview”, DS00990
These application notes and others are listed in the
design guide:
“Signal Chain Design Guide”, DS21825