Datasheet
Table Of Contents
- Features
- Applications
- Description
- Package Types
- Functional Block Diagram
- 1.0 Electrical Characteristics
- PIN FUNCTION TABLE
- electrical characteristics
- 2.0 Typical Performance Characteristics
- FIGURE 2-1: Integral Nonlinearity (INL) vs. Sample Rate.
- FIGURE 2-2: Integral Nonlinearity (INL) vs. Vref.
- FIGURE 2-3: Integral Nonlinearity (INL) vs. Code (Representative Part).
- FIGURE 2-4: Integral Nonlinearity (INL) vs. Sample Rate (Vdd = 2.7V).
- FIGURE 2-5: Integral Nonlinearity (INL) vs. Vref (Vdd = 2.7V).
- FIGURE 2-6: Integral Nonlinearity (INL) vs. Code (Representative Part, Vdd = 2.7V).
- FIGURE 2-7: Integral Nonlinearity (INL) vs. Temperature.
- FIGURE 2-8: Differential Nonlinearity (DNL) vs. Sample Rate.
- FIGURE 2-9: Differential Nonlinearity (DNL) vs. Vref.
- FIGURE 2-10: Integral Nonlinearity (INL) vs. Temperature (Vdd = 2.7V).
- FIGURE 2-11: Differential Nonlinearity (DNL) vs. Sample Rate (Vdd = 2.7V).
- FIGURE 2-12: Differential Nonlinearity (DNL) vs. Vref (Vdd = 2.7V).
- FIGURE 2-13: Differential Nonlinearity (DNL) vs. Code (Representative Part).
- FIGURE 2-14: Differential Nonlinearity (DNL) vs. Temperature.
- FIGURE 2-15: Gain Error vs. Vref.
- FIGURE 2-16: Differential Nonlinearity (DNL) vs. Code (Representative Part, Vdd = 2.7V).
- FIGURE 2-17: Differential Nonlinearity (DNL) vs. Temperature (Vdd = 2.7V).
- FIGURE 2-18: Offset Error vs. Vref.
- FIGURE 2-19: Gain Error vs. Temperature.
- FIGURE 2-20: Signal to Noise Ratio (SNR) vs. Input Frequency.
- FIGURE 2-21: Total Harmonic Distortion (THD) vs. Input Frequency.
- FIGURE 2-22: Offset Error vs. Temperature.
- FIGURE 2-23: Signal to Noise Ratio and Distortion (SINAD) vs. Input Frequency.
- FIGURE 2-24: Signal to Noise and Distortion (SINAD) vs. Input Signal Level.
- FIGURE 2-25: Effective Number of Bits (ENOB) vs. Vref.
- FIGURE 2-26: Spurious Free Dynamic Range (SFDR) vs. Input Frequency.
- FIGURE 2-27: Frequency Spectrum of 10kHz Input (Representative Part).
- FIGURE 2-28: Effective Number of Bits (ENOB) vs. Input Frequency.
- FIGURE 2-29: Power Supply Rejection (PSR) vs. Ripple Frequency.
- FIGURE 2-30: Frequency Spectrum of 1kHz Input (Representative Part, Vdd = 2.7V).
- FIGURE 2-31: Idd vs. Vdd.
- FIGURE 2-32: Idd vs. Clock Frequency.
- FIGURE 2-33: Idd vs. Temperature.
- FIGURE 2-34: Iref vs. Vdd.
- FIGURE 2-35: Iref vs. Clock Frequency.
- FIGURE 2-36: Iref vs. Temperature.
- FIGURE 2-37: Idds vs. Vdd.
- FIGURE 2-38: Idds vs. Temperature.
- FIGURE 2-39: Analog Input Leakage Current vs. Temperature.
- 3.0 Pin Descriptions
- 4.0 Device Operation
- 5.0 Serial Communications
- 6.0 Applications Information
- 7.0 Packaging Information
- Appendix A: Revision History
- Product Identification System
- Worldwide Sales and Service

MCP3001
DS21293C-page 18 © 2007 Microchip Technology Inc.
7.0 PACKAGING INFORMATION
7.1 Package Marking Information
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
* This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it wi
ll
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
3
e
XXXXXXXX
XXXXXNNN
YYWW
8-Lead PDIP (300 mil)
Example:
8-Lead SOIC (150 mil)
Example:
XXXXXXXX
XXXXYYWW
NNN
8-Lead TSSOP
Example:
MCP3001
I/PNNN
0736
MCP3001
NNN
8-Lead MSOP
Example:
XXXX
YYWW
NNN
XXXXXX
YWWNNN
3001
0716
NNN
3001I
725NNN
3
e
ISN
0736
3
e
3
e
3
e