Datasheet
2013 Microchip Technology Inc. DS22331A-page 43
MCP19111
6.8 MASTER Error Signal Gain
When operating in a multi-phase system, the output of
the MASTER’s error amplifier is used by all SLAVE
devices as their control signal. It is important to balance
the current in all phases to maintain a uniform
temperature across all phases. Component tolerances
make this balancing difficult. Each SLAVE device has
the ability to gain or attenuate the MASTER error signal
depending upon the settings of Register 6-8.
Note: The SLVGNCON register is configured in
the multi-phase SLAVE device.
REGISTER 6-8: SLVGNCON: MASTER ERROR SIGNAL INPUT GAIN CONTROL REGISTER
U-0 U-0 U-0 R/W-x R/W-x R/W-x R/W-x R/W-x
— — — SLVGN4 SLVGN3 SLVGN2 SLVGN1 SLVGN0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7-5 Unimplemented: Read as ‘0’
bit 4-0 SLVGN<4:0>: MASTER Error Signal Gain bits
00000 = -3.3 dB
00001 = -3.1 dB
00010 = -2.9 dB
00011 = -2.7 dB
00100 = -2.5 dB
00101 = -2.3 dB
00110 = -2.1 dB
00111 = -1.9 dB
01000 = -1.7 dB
01001 = -1.4 dB
01010 = -1.2 dB
01011 = -1.0 dB
01100 = -0.8 dB
01101 = -0.6 dB
01110 = -0.4 dB
01111 = -0.2 dB
10000 = 0.0 dB
10001 = 0.2 dB
10010 = 0.4dB
10011 = 0.7 dB
10100 = 0.9 dB
10101 = 1.1 dB
10110 = 1.3 dB
10111 = 1.5 dB
11000 = 1.7 dB
11001 = 1.9 dB
11010 = 2.1 dB
11011 = 2.3 dB
11100 = 2.6 dB
11101 = 2.8 dB
11110 = 3.0 dB
11111 = 3.2 dB