dsPIC33FJ12MC201/202 Data Sheet High-Performance, 16-bit Digital Signal Controllers © 2007-2011 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature.
dsPIC33FJ12MC201/202 High-Performance, 16-bit Digital Signal Controllers Operating Range: Interrupt Controller: • Up to 40 MIPS operation (at 3.0-3.
dsPIC33FJ12MC201/202 Motor Control Peripherals: CMOS Flash Technology: • 6-channel 16-bit Motor Control PWM: - Three duty cycle generators - Independent or Complementary mode - Programmable dead time and output polarity - Edge-aligned or center-aligned - Manual output override control - One Fault input - Trigger for ADC conversions - PWM frequency for 16-bit resolution (@ 40 MIPS) = 1220 Hz for Edge-Aligned mode, 610 Hz for Center-Aligned mode - PWM frequency for 11-bit resolution (@ 40 MIPS) = 39.
dsPIC33FJ12MC201/202 dsPIC33FJ12MC201/202 PRODUCT FAMILIES The device names, pin counts, memory sizes, and peripheral availability of each device are listed in Table 1. The following pages show their pinout diagrams.
dsPIC33FJ12MC201/202 Pin Diagrams = Pins are up to 5V tolerant 20-PIN PDIP, SOIC, SSOP 1 20 VDD 2 19 VSS PGEC2/AN1/VREF-/CN3/RA1 3 18 PWM1L1/RP15(1)/CN11/RB15 17 PWM1H1/RP14(1)/CN12/RB14 16 PWM1L2/RP13(1)/CN13/RB13 15 PWM1H2/RP12(1)/CN14/RB12 (1) 4 (1) PGEC1/AN3/RP1 /CN5/RB1 5 VSS 6 PGED1/AN2/RP0 /CN4/RB0 OSC1/CLKI/CN30/RA2 7 OSC2/CLKO/CN29/RA3 8 PGED3/SOSCI/RP4(1)/CN1/RB4 9 PGEC3/SOSCO/T1CK/CN0/RA4 10 dsPIC33FJ12MC201 MCLR PGED2/AN0/VREF+/CN2/RA0 14 VCAP 13 PWM2L1/SDA1
dsPIC33FJ12MC201/202 Pin Diagrams (Continued) 28-Pin QFN(2) MCLR AVDD AVSS 27 26 25 24 23 PWM1H1/ RP14(1)/CN12/RB14 PGED2/AN0/VREF+/CN2/RA0 28 PWM1L1/RP15(1)/CN11/RB15 PGEC2/AN1/VREF-/CN3/RA1 = Pins are up to 5V tolerant 22 PGED1/AN2/RP0(1)/CN4/RB0 1 21 PWM1L2/RP13(1)/CN13/RB13 PGEC1/AN3/RP1(1)/CN5/RB1 2 20 PWM1H2/RP12(1)/CN14/RB12 AN4/RP2(1)/CN6/RB2 3 19 TMS/PWM1L3/RP11(1)/CN15/RB11 AN5/RP3(1)/CN7/RB3 4 18 TDI/PWM1H3/RP10(1)/CN16/RB10 V SS 5 17 VCAP OSC1/CLKI/CN30/RA2 6
dsPIC33FJ12MC201/202 Table of Contents dsPIC33FJ12MC201/202 Product Families ........................................................................................................................................... 5 1.0 Device Overview .......................................................................................................................................................................... 9 2.0 Guidelines for Getting Started with 16-bit Digital Signal Controllers ..........................
dsPIC33FJ12MC201/202 1.0 DEVICE OVERVIEW Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC33F/PIC24H Family Reference Manual”. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections. 2: Some registers and associated bits described in this section may not be available on all devices.
dsPIC33FJ12MC201/202 FIGURE 1-1: dsPIC33FJ12MC201/202 BLOCK DIAGRAM PSV and Table Data Access Control Block Y Data Bus X Data Bus Interrupt Controller 16 8 PORTA 16 16 16 Data Latch Data Latch X RAM Y RAM Address Latch Address Latch 23 23 PCU PCH PCL Program Counter Loop Stack Control Control Logic Logic PORTB 16 23 16 16 Remappable Pins Address Generator Units Address Latch Program Memory EA MUX Data Latch ROM Latch 24 Instruction Reg Control Signals to Various Blocks Timing Ge
dsPIC33FJ12MC201/202 TABLE 1-1: PINOUT I/O DESCRIPTIONS Pin Type Buffer Type PPS AN0-AN5 I Analog No Analog input channels. CLKI CLKO I O ST/CMOS — No No External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function. OSC1 I ST/CMOS No OSC2 I/O — No Oscillator crystal input.
dsPIC33FJ12MC201/202 TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Type Buffer Type INDX QEA I I ST ST QEB I ST UPDN O CMOS FLTA1 PWM1L1 PWM1H1 PWM1L2 PWM1H2 PWM1L3 PWM1H3 FLTA2 PWM2L1 PWM2H1 I O O O O O O I O O ST — — — — — — ST — — Yes No No No No No No Yes No No PWM1 Fault A input. PWM1 Low output 1 PWM1 High output 1 PWM1 Low output 2 PWM1 High output 2 PWM1 Low output 3 PWM1 High output 3 PWM2 Fault A input.
dsPIC33FJ12MC201/202 1.1 Referenced Sources This device data sheet is based on the following individual chapters of the “dsPIC33F/PIC24H Family Reference Manual”. These documents should be considered as the general reference for the operation of a particular module or device feature. Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33FJ12MC202 product page of the Microchip web site (www.microchip.
dsPIC33FJ12MC201/202 NOTES: DS70265E-page 14 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 2.0 Note: 2.1 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC33F Family Reference Manual”, which is available from the Microchip web site (www.microchip.com).
dsPIC33FJ12MC201/202 FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION 0.1 µF Ceramic R R1 MCLR C dsPIC33F VSS 10 Ω 2.2.1 VDD 0.1 µF Ceramic VSS VDD AVSS VDD AVDD 0.1 µF Ceramic VSS Master Clear (MCLR) Pin The MCLR pin provides for two specific device functions: • Device Reset • Device programming and debugging During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin.
dsPIC33FJ12MC201/202 2.5 ICSP Pins The PGECx and PGEDx pins are used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.
dsPIC33FJ12MC201/202 2.7 Oscillator Value Conditions on Device Start-up If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first.
dsPIC33FJ12MC201/202 3.0 CPU Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. “CPU” (DS70204) of the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip website (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.
dsPIC33FJ12MC201/202 A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions. The dsPIC33FJ12MC201/202 supports 16/16 and 32/ 16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles.
dsPIC33FJ12MC201/202 FIGURE 3-2: dsPIC33FJ12MC201/202 PROGRAMMER’S MODEL D15 D0 W0/WREG PUSH.
dsPIC33FJ12MC201/202 3.
dsPIC33FJ12MC201/202 REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED) bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits(2) 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level i
dsPIC33FJ12MC201/202 REGISTER 3-2: U-0 — bit 15 U-0 — R/W-0 SATB Legend: R = Readable bit 0’ = Bit is cleared bit 11 bit 10-8 U-0 — R/W-0 US R/W-0 EDT(1) R-0 R-0 DL<2:0> R-0 bit 8 R/W-0 SATA bit 7 bit 15-13 bit 12 CORCON: CORE CONTROL REGISTER R/W-1 SATDW R/W-0 ACCSAT C = Clear only bit W = Writable bit ‘x = Bit is unknown R/C-0 IPL3(2) R/W-0 PSV R/W-0 RND R/W-0 IF bit 0 -n = Value at POR ‘1’ = Bit is set U = Unimplemented bit, read as ‘0’ Unimplemented: Read as ‘0’ US: DSP Multiply U
dsPIC33FJ12MC201/202 3.5 Arithmetic Logic Unit (ALU) The dsPIC33FJ12MC201/202 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts, and logic operations. Unless otherwise mentioned, arithmetic operations are 2’s complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV), and Digit Carry (DC) Status bits in the SR register.
dsPIC33FJ12MC201/202 FIGURE 3-3: DSP ENGINE BLOCK DIAGRAM 40 S a 40 Round t 16 u Logic r a t e 40-bit Accumulator A 40-bit Accumulator B Carry/Borrow Out Carry/Borrow In Saturate Adder Negate 40 40 40 16 X Data Bus Barrel Shifter 40 Y Data Bus Sign-Extend 32 Zero Backfill 16 32 33 17-bit Multiplier/Scaler 16 16 To/From W Array DS70265E-page 26 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 3.6.1 MULTIPLIER The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits.
dsPIC33FJ12MC201/202 The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user application. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow, and therefore, indicate that a catastrophic overflow has occurred.
dsPIC33FJ12MC201/202 3.6.3.1 Round Logic The round logic is a combinational block that performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value that is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.
dsPIC33FJ12MC201/202 NOTES: DS70265E-page 30 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 4.0 Note: MEMORY ORGANIZATION 4.1 The program address memory space of the dsPIC33FJ12MC201/202 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 “Interfacing Program and Data Memory Spaces”. This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices.
dsPIC33FJ12MC201/202 4.1.1 PROGRAM MEMORY ORGANIZATION 4.1.2 All dsPIC33FJ12MC201/202 devices reserve the addresses between 0x00000 and 0x000200 for hardcoded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.
dsPIC33FJ12MC201/202 4.2 Data Address Space The dsPIC33FJ12MC201/202 CPU has a separate 16bit-wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps is shown in Figure 4-3. All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words.
dsPIC33FJ12MC201/202 FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJ12MC201/202 DEVICES WITH 1 KB RAM MSB Address MSb 2 Kbyte SFR Space 1 Kbyte SRAM Space LSb 0x0000 0x0001 SFR Space 0x07FF 0x0801 0x09FF 0x0A01 X Data RAM (X) Y Data RAM (Y) 0x07FE 0x0800 0x09FE 0x0A00 0x0BFF 0x0C01 0x0BFE 0x0C00 0x1FFF 0x2001 0x1FFE 0x8001 0x8000 8 Kbyte Near Data Space 0x2000 X Data Unimplemented (X) Optionally Mapped into Program Memory 0xFFFF DS70265E-page 34 LSB Address 16 bits 0xFFFE © 2007-2011 Microc
dsPIC33FJ12MC201/202 4.2.5 X AND Y DATA SPACES The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths.
SFR Name CPU CORE REGISTERS MAP SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets © 2007-2011 Microchip Technology Inc.
© 2007-2011 Microchip Technology Inc.
SFR Name SFR Addr INTERRUPT CONTROLLER REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 3 Bit 2 Bit 1 MATHERR ADDRERR STKERR Bit 0 All Resets 0000 INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE OSCFAIL — INTCON2 0082 ALTIVT DISI — — — — — — — — — — — INT2EP INT1EP INT0EP 0000 IFS0 0084 — — AD1IF U1TXIF U1RXIF SPI1IF SPI1EIF T3IF T2IF OC2IF IC2IF — T1IF OC1IF IC1IF INT0IF 0000 SFTACER
© 2007-2011 Microchip Technology Inc.
SFR Name Addr.
© 2007-2011 Microchip Technology Inc. TABLE 4-10: SFR Name Addr.
SFR Name SFR Addr UART1 REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 WAKE LPBACK Bit 5 Bit 4 Bit 3 ABAUD URXINV BRGH ADDEN RIDLE PERR Bit 2 Bit 1 All Resets STSEL 0000 URXDA 0110 U1MODE 0220 UARTEN — USIDL IREN RTSMD — UEN1 UEN0 U1STA 0222 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF TRMT U1TXREG 0224 — — — — — — — UART Transmit Register xxxx U1RXREG 0226 — — — — — — — UART Receive Register 0000 U1BRG
© 2007-2011 Microchip Technology Inc.
ADC1 REGISTER MAP FOR dsPIC33FJ12MC201 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Addr ADC1BUF0 0300 ADC Data Buffer 0 xxxx ADC1BUF1 0302 ADC Data Buffer 1 xxxx ADC1BUF2 0304 ADC Data Buffer 2 xxxx ADC1BUF3 0306 ADC Data Buffer 3 xxxx ADC1BUF4 0308 ADC Data Buffer 4 xxxx ADC1BUF5 030A ADC Data Buffer 5 xxxx ADC1BUF6 030C ADC Data Buffer 6 xxxx ADC1BUF7 030E ADC Data Buffer 7 xxxx ADC1BUF8 0310 ADC Data Buffer 8 xxxx ADC1BUF9 0312 ADC Data Buffer 9 xxxx AD
© 2007-2011 Microchip Technology Inc.
File Name PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ12MC201 Addr Bit 15 Bit 14 Bit 13 RPOR0 06C0 — — — RPOR2 06C4 — — — RPOR3 06C6 — — — RPOR4 06C8 — — RPOR6 06CC — — RPOR7 Legend: Bit 7 Bit 6 Bit 5 — — — RP0R<4:0> — — — RP4R<4:0> RP7R<4:0> — — — — RP9R<4:0> — — — RP8R<4:0> 0000 — RP13R<4:0> — — — RP12R<4:0> 0000 06CE — — — RP15R<4:0> — x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
© 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 4.2.6 4.2.7 SOFTWARE STACK In addition to its use as a working register, the W15 register in the dsPIC33FJ12MC201/202 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-4.
dsPIC33FJ12MC201/202 TABLE 4-26: FUNDAMENTAL ADDRESSING MODES SUPPORTED Addressing Mode File Register Direct Description The address of the file register is specified explicitly. Register Direct The contents of a register are accessed directly. Register Indirect The contents of Wn forms the Effective Address (EA). Register Indirect Post-Modified The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
dsPIC33FJ12MC201/202 4.4 4.4.1 Modulo Addressing Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms. Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both).
dsPIC33FJ12MC201/202 4.4.3 MODULO ADDRESSING APPLICABILITY Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register.
dsPIC33FJ12MC201/202 FIGURE 4-6: BIT-REVERSED ADDRESS EXAMPLE Sequential Address b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 0 Bit Locations Swapped Left-to-Right Around Center of Binary Value b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1 b2 b3 b4 0 Bit-Reversed Address Pivot Point XB = 0x0008 for a 16-Word, Bit-Reversed Buffer TABLE 4-27: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY) Normal Address Bit-Reversed Address A3 A2 A1 A0 Decimal A3 A2 A1 A0 Decimal 0 0 0 0 0 0 0 0 0
dsPIC33FJ12MC201/202 4.6 4.6.1 Interfacing Program and Data Memory Spaces Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used. The dsPIC33FJ12MC201/202 architecture uses a 24bit-wide program space and a 16-bit-wide data space.
dsPIC33FJ12MC201/202 FIGURE 4-7: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION Program Counter(1) Program Counter 0 0 23 bits EA Table Operations(2) 1/0 1/0 TBLPAG 8 bits 16 bits 24 bits Select Program Space Visibility(1) (Remapping) 0 EA 1 0 PSVPAG 8 bits 15 bits 23 bits User/Configuration Space Select Byte Select Note 1: The Least Significant bit of program space addresses is always fixed as ‘0’ to maintain word alignment of data in the program and data spaces.
dsPIC33FJ12MC201/202 4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data. The PC is incremented by two for each successive 24-bit program word.
dsPIC33FJ12MC201/202 4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL and TBLRDH).
dsPIC33FJ12MC201/202 5.0 unprogrammed devices, and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. FLASH PROGRAM MEMORY Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5.
dsPIC33FJ12MC201/202 5.2 RTSP Operation The dsPIC33FJ12MC201/202 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions); and to program one row or one word. Table 24-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.
dsPIC33FJ12MC201/202 REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER R/SO-0(1) R/W-0(1) R/W-0(1) U-0 U-0 U-0 U-0 U-0 WR WREN WRERR — — — — — bit 15 bit 8 U-0 R/W-0(1) U-0 U-0 — ERASE — — R/W-0(1) R/W-0(1) R/W-0(1) R/W-0(1) NVMOP<3:0>(2) bit 7 bit 0 Legend: SO = Settable only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 WR: Write Control bit 1 = Initia
dsPIC33FJ12MC201/202 REGISTER 5-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 NVMKEY<7:0> bit 7 bit 0 SO = Settable only bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-8 Unimplemented: Read as ‘0’ bit 7-0 NVMKEY<7:0>: Key Register (write-only) bits DS70265E-page 60 x = Bit is unknown
dsPIC33FJ12MC201/202 5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY 5. Programmers can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is: 1. 2. 3. 4. Read eight rows of program memory (512 instructions) and store in data RAM. Update the program data in RAM with the desired new data.
dsPIC33FJ12MC201/202 EXAMPLE 5-2: LOADING THE WRITE BUFFERS ; Set up NVMCON for row programming operations MOV #0x4001, W0 ; MOV W0, NVMCON ; Initialize NVMCON ; Set up a pointer to the first program memory location to be written ; program memory selected, and writes enabled MOV #0x0000, W0 ; MOV W0, TBLPAG ; Initialize PM Page Boundary SFR MOV #0x6000, W0 ; An example program memory address ; Perform the TBLWT instructions to write the latches ; 0th_program_word MOV #LOW_WORD_0, W2 ; MOV #HIGH_BYTE_0, W3
dsPIC33FJ12MC201/202 6.0 A simplified block diagram of the Reset module is shown in Figure 6-1. RESETS Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. “Reset” (DS70192) of the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip website (www.microchip.com).
dsPIC33FJ12MC201/202 RCON: RESET CONTROL REGISTER(1) REGISTER 6-1: R/W-0 R/W-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 TRAPR IOPUWR — — — — CM VREGS bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 EXTR SWR SWDTEN(2) WDTO SLEEP IDLE BOR POR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 TRAPR: Trap Reset Flag bit 1 = A Trap Conflict Reset ha
dsPIC33FJ12MC201/202 REGISTER 6-1: RCON: RESET CONTROL REGISTER(1) (CONTINUED) bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit 1 = A Power-on Reset has occurred 0 = A Power-on Reset has not occurred Note 1: 2: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
dsPIC33FJ12MC201/202 6.1 The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is detailed below and is shown in Figure 6-2. System Reset The dsPIC33FJ12MC201/202 family of devices have two types of Reset: • Cold Reset • Warm Reset A cold Reset is the result of a POR or a BOR.
dsPIC33FJ12MC201/202 FIGURE 6-2: SYSTEM RESET TIMING VBOR Vbor VPOR VDD TPOR POR 1 TBOR 2 BOR 3 TPWRT SYSRST 4 Oscillator Clock TOSCD TOST TLOCK 6 TFSCM FSCM 5 Reset Device Status Run Time 1. 2. 3. 4. 5. 6. POR: A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed.
dsPIC33FJ12MC201/202 6.2 POR 6.3 A POR circuit ensures the device is reset from poweron. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable. The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 24.0 “Electrical Characteristics” for details.
dsPIC33FJ12MC201/202 6.4 External Reset (EXTR) The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to Section 24.0 “Electrical Characteristics” for minimum pulse width specifications. The External Reset (MCLR) Pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset. 6.4.
dsPIC33FJ12MC201/202 6.9.1 ILLEGAL OPCODE RESET 6.10 A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory. The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the Reset. The illegal opcode Reset function can prevent the device from executing program memory sections that are used to store constant data.
dsPIC33FJ12MC201/202 7.0 INTERRUPT CONTROLLER Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. “Interrupts” (DS70184) of the “dsPIC33F/PIC24H Family Reference Manual”, which is available on the Microchip website (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices.
dsPIC33FJ12MC201/202 Decreasing Natural Order Priority FIGURE 7-1: Note 1: DS70265E-page 72 dsPIC33FJ12MC201/202 INTERRUPT VECTOR TABLE Reset – GOTO Instruction Reset – GOTO Address Reserved Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 ~ ~ ~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~ ~ ~ Interrupt Vector 116 Interrupt Vector 117 Reserved Reserved Reserved Oscillato
dsPIC33FJ12MC201/202 TABLE 7-1: INTERRUPT VECTORS Vector Number Interrupt Request (IRQ) Number IVT Address AIVT Address 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 0x000014 0x000016 0x000018 0x00001A 0x00001C 0x00001E 0x000020 0x000022 0x000024 0x000026 0x000028 0x00002A 0x00002C 0x0
dsPIC33FJ12MC201/202 TABLE 7-1: INTERRUPT VECTORS (CONTINUED) Vector Number Interrupt Request (IRQ) Number IVT Address AIVT Address 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 0x000070 0x000072 0x000074 0x000076 0x000078 0x00007A 0x00007C 0x00007E 0x000080 0x000082 0x000084 0x000086 0x000088 0x00008A 0x00008C 0x00008E 0x000090 0x000170 0x000172 0x000174 0x000176 0x000178 0x00017A 0x00017C 0x00017E 0x000180 0x000182 0x000184 0x000186 0x000188
dsPIC33FJ12MC201/202 7.3 Interrupt Control and Status Registers The dsPIC33FJ12MC201/202 devices implement a total of 22 registers for the interrupt controller: • • • • • • INTCON1 INTCON2 IFSx IECx IPCx INTTREG 7.3.1 INTCON1 AND INTCON2 Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources.
dsPIC33FJ12MC201/202 REGISTER 7-1: SR: CPU STATUS REGISTER(1) R-0 R-0 R/C-0 R/C-0 R-0 R/C-0 R -0 R/W-0 OA OB SA SB OAB SAB DA DC bit 15 bit 8 R/W-0(3) R/W-0(3) IPL2(2) (2) IPL1 R/W-0(3) R-0 R/W-0 R/W-0 R/W-0 R/W-0 IPL0(2) RA N OV Z C bit 7 bit 0 Legend: C = Clear only bit R = Readable bit U = Unimplemented bit, read as ‘0’ S = Set only bit W = Writable bit -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown IPL<2:0>: CPU Interrupt Priori
dsPIC33FJ12MC201/202 REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE bit 15 bit 8 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 SFTACERR DIV0ERR — MATHERR ADDRERR STKERR OSCFAIL — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 NSTDIS: Interrupt Nesting Disa
dsPIC33FJ12MC201/202 REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED) bit 2 STKERR: Stack Error Trap Status bit 1 = Stack error trap has occurred 0 = Stack error trap has not occurred bit 1 OSCFAIL: Oscillator Failure Trap Status bit 1 = Oscillator failure trap has occurred 0 = Oscillator failure trap has not occurred bit 0 Unimplemented: Read as ‘0’ DS70265E-page 78 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2 R/W-0 R-0 U-0 U-0 U-0 U-0 U-0 U-0 ALTIVT DISI — — — — — — bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 — — — — — INT2EP INT1EP INT0EP bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 ALTIVT: Enable Alternate Interrupt Vector Table bit 1 = Use alternate vector table 0 = Use standard (d
dsPIC33FJ12MC201/202 REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — AD1IF U1TXIF U1RXIF SPI1IF SPI1EIF T3IF bit 15 bit 8 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 T2IF OC2IF IC2IF — T1IF OC1IF IC1IF INT0IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-14 Unimplemented: Read as ‘0’ bit 13 AD1IF: ADC1
dsPIC33FJ12MC201/202 REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED) bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 0 INT0IF: External Interrupt 0 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 — — INT2IF — — — — — bit 15 bit 8 R/W-0 R/W-0 U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 IC8IF IC7IF — INT1IF CNIF — MI2C1IF SI2C1IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-14 Unimplemented: Read as ‘0’ bit 13 INT2IF: External Interrupt 2 Flag Status bit 1
dsPIC33FJ12MC201/202 REGISTER 7-7: IFS3: INTERRUPT FLAG STATUS REGISTER 3 R/W-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 U-0 FLTA1IF — — — — QEIIF PWM1IF — bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 FLTA1IF: PWM1 Fault A Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has no
dsPIC33FJ12MC201/202 REGISTER 7-8: IFS4: INTERRUPT FLAG STATUS REGISTER 4 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 U-0 — — — — — FLTA2IF PWM2IF — bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 U-0 — — — — — — U1EIF — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-11 Unimplemented: Read as ‘0’ bit 10 FLTA2IF: PWM2 Fault A Interrupt Flag Status bit 1 = Interrupt request ha
dsPIC33FJ12MC201/202 REGISTER 7-9: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — AD1IE U1TXIE U1RXIE SPI1IE SPI1EIE T3IE bit 15 bit 8 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 T2IE OC2IE IC2IE — T1IE OC1IE IC1IE INT0IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-14 Unimplemented: Read as ‘0’ bit 13 AD1IE: AD
dsPIC33FJ12MC201/202 REGISTER 7-9: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED) bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 0 INT0IE: External Interrupt 0 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled DS70265E-page 86 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 REGISTER 7-10: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 — — INT2IE — — — — — bit 15 bit 8 R/W-0 R/W-0 U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 IC8IE IC7IE — INT1IE CNIE — MI2C1IE SI2C1IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-14 Unimplemented: Read as ‘0’ bit 13 INT2IE: External Interrupt 2 Enable bit 1
dsPIC33FJ12MC201/202 REGISTER 7-11: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3 R/W-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 U-0 FLTA1IE — — — — QEIIE PWM1IE — bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 FLTA1IE: PWM1 Fault A Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
dsPIC33FJ12MC201/202 REGISTER 7-12: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 U-0 — — — — — FLA2IE PWM2IE — bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 U-0 — — — — — — U1EIE — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-11 Unimplemented: Read as ‘0’ bit 10 FLA2IE: PWM2 Fault A Interrupt Enable bit 1 = Interrupt request enabl
dsPIC33FJ12MC201/202 REGISTER 7-13: U-0 IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0 R/W-1 — R/W-0 R/W-0 T1IP<2:0> U-0 R/W-1 — R/W-0 R/W-0 OC1IP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 IC1IP<2:0> R/W-0 U-0 R/W-1 — R/W-0 R/W-0 INT0IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14-12 T1IP<2:0>: Timer1 Interrupt Priority bits 111 = Interr
dsPIC33FJ12MC201/202 REGISTER 7-14: U-0 IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1 R/W-1 — R/W-0 R/W-0 T2IP<2:0> U-0 R/W-1 — R/W-0 R/W-0 OC2IP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 IC2IP<2:0> R/W-0 U-0 U-1 U-0 U-0 — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14-12 T2IP<2:0>: Timer2 Interrupt Priority bits 111 = Interrupt is pri
dsPIC33FJ12MC201/202 REGISTER 7-15: U-0 IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2 R/W-1 — R/W-0 R/W-0 U1RXIP<2:0> U-0 R/W-1 — R/W-0 R/W-0 SPI1IP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 SPI1EIP<2:0> R/W-0 U-0 — R/W-1 R/W-0 R/W-0 T3IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14-12 U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits
dsPIC33FJ12MC201/202 REGISTER 7-16: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3 U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 R/W-0 — — — — — — — — bit 15 bit 8 U-0 R/W-1 — R/W-0 AD1IP<2:0> R/W-0 U-0 R/W-1 — R/W-0 R/W-0 U1TXIP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-7 Unimplemented: Read as ‘0’ bit 6-4 AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits 11
dsPIC33FJ12MC201/202 REGISTER 7-17: U-0 IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4 R/W-1 — R/W-0 R/W-0 CNIP<2:0> U-0 U-0 U-0 U-0 — — — — bit 15 bit 8 U-0 R/W-1 — R/W-0 MI2C1IP<2:0> R/W-0 U-0 — R/W-1 R/W-0 R/W-0 SI2C1IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14-12 CNIP<2:0>: Change Notification Interrupt Priority bits 111 =
dsPIC33FJ12MC201/202 REGISTER 7-18: U-0 IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5 R/W-1 — R/W-0 R/W-0 IC8IP<2:0> U-0 R/W-1 — R/W-0 R/W-0 IC7IP<2:0> bit 15 bit 8 U-0 U-1 U-0 U-0 U-0 — — — — — R/W-1 R/W-0 R/W-0 INT1IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14-12 IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits 1
dsPIC33FJ12MC201/202 REGISTER 7-19: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7 U-0 U-1 U-0 U-0 U-0 U-1 U-0 U-0 — — — — — — — — bit 15 bit 8 U-0 R/W-1 — R/W-0 INT2IP<2:0> R/W-0 U-0 U-0 U-0 U-0 — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-7 Unimplemented: Read as ‘0’ bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is priority 7
dsPIC33FJ12MC201/202 REGISTER 7-20: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14 U-0 U-0 U-0 U-0 U-0 — — — — — R/W-1 R/W-0 R/W-0 QEIIP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 PWM1IP<2:0> R/W-0 U-0 U-0 U-0 U-0 — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-12 Unimplemented: Read as ‘0’ bit 10-8 QEIIP<2:0>: QEI Interrupt Priority bits 111 = Interrupt is priori
dsPIC33FJ12MC201/202 REGISTER 7-21: U-0 IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15 R/W-1 — R/W-0 R/W-0 FLTA1IP<2:0> U-0 U-0 U-0 U-0 — — — — bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 Unimplemented: Read as ‘0’ bit 14-12 FLTA1IP<2:0>: PWM1 Fault A Interrupt Priority bits 111 = Interrupt is priori
dsPIC33FJ12MC201/202 REGISTER 7-23: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18 U-0 U-0 U-0 U-0 U-0 — — — — — R/W-0 R/W-0 R/W-0 FLTA2IP<2:0> bit 15 bit 8 U-0 R/W-1 — R/W-0 PWM2IP<2:0> R/W-0 U-0 U-0 U-0 U-0 — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-11 Unimplemented: Read as ‘0’ bit 8-10 FLTA2IP<2:0>: PWM2 Fault A Interrupt Priority bits 111 = Interr
dsPIC33FJ12MC201/202 REGISTER 7-24: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER U-0 U-0 U-0 U-0 — — — — R-0 R-0 R-0 R-0 ILR<3:0> bit 15 bit 8 U-0 R-0 R-0 — R-0 R-0 R-0 R-0 R-0 VECNUM<6:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-12 Unimplemented: Read as ‘0’ bit 11-8 ILR<3:0>: New CPU Interrupt Priority Level bits 1111 = CPU Interrupt Priority Level is 15 •
dsPIC33FJ12MC201/202 7.4 Interrupt Setup Procedures 7.4.1 INITIALIZATION To configure an interrupt source at initialization: 1. 2. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired. Select the user-assigned priority level for the interrupt source by writing the control bits into the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source.
dsPIC33FJ12MC201/202 NOTES: DS70265E-page 102 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 8.0 The dsPIC33FJ12MC201/202 provides: OSCILLATOR CONFIGURATION Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. “Oscillator” (DS70186) of the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip website (www.microchip.com).
dsPIC33FJ12MC201/202 8.1 CPU Clocking System The dsPIC33FJ12MC201/202 devices provide seven system clock options: • • • • • • • Fast RC (FRC) Oscillator FRC Oscillator with PLL Primary (XT, HS or EC) Oscillator Primary Oscillator with PLL Secondary (LP) Oscillator Low-Power RC (LPRC) Oscillator FRC Oscillator with postscaler 8.1.1 8.1.1.1 SYSTEM CLOCK SOURCES Fast RC The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency.
dsPIC33FJ12MC201/202 8.1.3 PLL CONFIGURATION For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL. The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 8-2. • If PLLPRE<4:0> = 0, then N1 = 2.
dsPIC33FJ12MC201/202 TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION Oscillator Source POSCMD<1:0> FNOSC<2:0> Note Fast RC Oscillator with Divide-by-N (FRCDIVN) Internal xx 111 1, 2 Fast RC Oscillator with Divide-by-16 (FRCDIV16) Internal xx 110 1 Oscillator Mode Low-Power RC Oscillator (LPRC) Internal xx 101 1 Secondary xx 100 1 Primary Oscillator (HS) with PLL (HSPLL) Primary 10 011 — Primary Oscillator (XT) with PLL (XTPLL) Primary 01 011 — Primary Oscillator (E
dsPIC33FJ12MC201/202 OSCCON: OSCILLATOR CONTROL REGISTER(1,3) REGISTER 8-1: U-0 R-0 — R-0 R-0 COSC<2:0> U-0 R/W-y R/W-y R/W-y NOSC<2:0>(2) — bit 15 bit 8 R/W-0 R/W-0 R-0 U-0 R/C-0 U-0 R/W-0 R/W-0 CLKLOCK IOLOCK LOCK — CF — LPOSCEN OSWEN bit 7 bit 0 Legend: y = Value set from Configuration bits on POR R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 Unimplemented: R
dsPIC33FJ12MC201/202 REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER(1,3) (CONTINUED) bit 3 CF: Clock Fail Detect bit (read/clear by application) 1 = FSCM has detected clock failure 0 = FSCM has not detected clock failure bit 2 Unimplemented: Read as ‘0’ bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit 1 = Enable secondary oscillator 0 = Disable secondary oscillator bit 0 OSWEN: Oscillator Switch Enable bit 1 = Request oscillator switch to selection specified by NOSC<2:0> bits 0 = Oscillator s
dsPIC33FJ12MC201/202 REGISTER 8-2: R/W-0 CLKDIV: CLOCK DIVISOR REGISTER(2) R/W-0 ROI R/W-1 R/W-1 R/W-0 R/W-0 DOZEN(1) DOZE<2:0> R/W-0 R/W-0 FRCDIV<2:0> bit 15 bit 8 R/W-0 R/W-1 U-0 PLLPOST<1:0> R/W-0 R/W-0 — R/W-0 R/W-0 R/W-0 PLLPRE<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts will clear the DOZEN bi
dsPIC33FJ12MC201/202 REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER(1) U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0(1) — — — — — — — PLLDIV<8> bit 15 bit 8 R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0 PLLDIV<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-9 Unimplemented: Read as ‘0’ bit 8-0 PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted a
dsPIC33FJ12MC201/202 REGISTER 8-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER(2) U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 U-0 U-0 — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 TUN<5:0>(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-6 Unimplemented: Read as ‘0’ bit 5-0 TUN<5:0>: FRC Oscillator Tuning bits(1) 011111 = Center frequency +11.625% (8.
dsPIC33FJ12MC201/202 8.2 Clock Switching Operation Applications are free to switch among any of the four clock sources (Primary, LP, FRC, and LPRC) under software control at any time. To limit the possible side effects of this flexibility, dsPIC33FJ12MC201/202 devices have a safeguard lock built into the switch process. Primary Oscillator mode has three different submodes (XT, HS, and EC), which are determined by the POSCMD<1:0> Configuration bits.
dsPIC33FJ12MC201/202 9.0 POWER-SAVING FEATURES Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. “Watchdog Timer and Power-Saving Modes” (DS70196) of the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip website (www.microchip.com).
dsPIC33FJ12MC201/202 9.2.2 IDLE MODE The following occur in Idle mode: • The CPU stops executing instructions • The WDT is automatically cleared • The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 “Peripheral Module Disable”). • If the WDT or FSCM is enabled, the LPRC also remains active.
dsPIC33FJ12MC201/202 REGISTER 9-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 — — T3MD T2MD T1MD QEIMD PWM1MD — bit 15 bit 8 R/W-0 U-0 R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 I2C1MD — U1MD — SPI1MD — — AD1MD(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-14 Unimplemented: Read as ‘0’ bit 13 T3MD: Timer3 Module Disab
dsPIC33FJ12MC201/202 REGISTER 9-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 R/W-0 R/W-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 IC8MD IC7MD — — — — IC2MD IC1MD bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 — — — — — — OC2MD OC1MD bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 IC8MD: Input Capture 8 Module Disable bit 1 = Input Capture 8 module is disabled 0 =
dsPIC33FJ12MC201/202 REGISTER 9-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 U-0 — — — — — — — — bit 15 bit 8 U-0 U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 — — — PWM2MD — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-5 Unimplemented: Read as ‘0’ bit 4 PWM2MD: PWM2 Module Disable bit 1 = PWM2 module is disabled 0 = PWM2 modul
dsPIC33FJ12MC201/202 NOTES: DS70265E-page 118 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 10.0 I/O PORTS Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. “I/O Ports” (DS70193) of the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip website (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices.
dsPIC33FJ12MC201/202 10.1.1 OPEN-DRAIN CONFIGURATION In addition to the PORT, LAT, and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output. The open-drain feature allows the generation of outputs higher than VDD (e.g.
dsPIC33FJ12MC201/202 10.4 Peripheral Pin Select Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device. The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins.
dsPIC33FJ12MC201/202 SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)(1) TABLE 10-1: Input Name External Interrupt 1 External Interrupt 2 Timer2 External Clock Timer3 External Clock Input Capture 1 Input Capture 2 Input Capture 7 Input Capture 8 Output Compare Fault A Function Name Register Configuration Bits INT1 INT2 T2CK T3CK IC1 IC2 IC7 IC8 OCFA RPINR0 RPINR1 RPINR3 RPINR3 RPINR7 RPINR7 RPINR10 RPINR10 RPINR11 INT1R<4:0> INT2R<4:0> T2CKR<4:0> T3CKR<4:0> IC1R<4:0> IC2R<4:0> IC7R<4:0> IC8R<4:0> O
dsPIC33FJ12MC201/202 TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn) Function RPnR<4:0> NULL 00000 RPn tied to default port pin U1TX 00011 RPn tied to UART1 Transmit U1RTS 00100 RPn tied to UART1 Ready To Send SDO1 00111 RPn tied to SPI1 Data Output SCK1OUT 01000 RPn tied to SPI1 Clock Output SS1OUT 01001 RPn tied to SPI1 Slave Select Output OC1 10010 RPn tied to Output Compare 1 OC2 10011 RPn tied to Output Compare 2 UPDN 11010 RPn tied to QEI direction (UPDN) status 10
dsPIC33FJ12MC201/202 REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 INT1R<4:0> bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as ‘0’ bit 12-8 INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the
dsPIC33FJ12MC201/202 REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 INT2R<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as ‘0’ bit 4-0 INT2R<4:0>: Assign External Interrupt 2 (INTR2) to the co
dsPIC33FJ12MC201/202 REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 T3CKR<4:0> bit 15 bit 8 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 T2CKR<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as ‘0’ bit 12-8 T3CKR<4:0>: Assign Timer3 External Clock (T3CK)
dsPIC33FJ12MC201/202 REGISTER 10-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 IC2R<4:0> bit 15 bit 8 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 IC1R<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-13 Unimplemented: Read as ‘0’ bit 12-8 IC2R<4:0>: Assign Input Capture 2 (IC2) to the corresponding RPn pin 1
dsPIC33FJ12MC201/202 REGISTER 10-5: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 IC8R<4:0> bit 15 bit 8 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 IC7R<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as ‘0’ bit 12-8 IC8R<4:0>: Assign Input Capture 8 (IC8) to the c
dsPIC33FJ12MC201/202 REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 OCFAR<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as ‘0’ bit 4-0 OCFAR<4:0>: Assign Output Capture A (OCFA) to the corre
dsPIC33FJ12MC201/202 REGISTER 10-8: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 FLTA2R<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as ‘0’ bit 4-0 FLTA2R<4:0>: Assign PWM2 Fault (FLTA2) to the correspo
dsPIC33FJ12MC201/202 REGISTER 10-9: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 QEB1R<4:0> bit 15 bit 8 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 QEA1R<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-13 Unimplemented: Read as ‘0’ bit 12-8 QEB1R<4:0>: Assign B (QEB) to the corresponding pin 11111 = Input
dsPIC33FJ12MC201/202 REGISTER 10-10: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 INDX1R<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as ‘0’ bit 4-0 INDX1R<4:0>: Assign QEI1 INDEX (INDX1) to the correspon
dsPIC33FJ12MC201/202 REGISTER 10-11: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 U1CTSR<4:0> bit 15 bit 8 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 U1RXR<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as ‘0’ bit 12-8 U1CTSR<4:0>: Assign UART1 Clear to Send (U1CTS
dsPIC33FJ12MC201/202 REGISTER 10-12: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 SCK1R<4:0> bit 15 bit 8 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 SDI1R<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as ‘0’ bit 12-8 SCK1R<4:0>: Assign SPI1 Clock Input (SCK1IN) to
dsPIC33FJ12MC201/202 REGISTER 10-13: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 SS1R<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as ‘0’ bit 4-0 SS1R<4:0>: Assign SPI1 Slave Select Input (SS1IN) to the
dsPIC33FJ12MC201/202 REGISTER 10-14: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0 U-0 U-0 U-0 — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RP1R<4:0> bit 15 bit 8 U-0 U-0 U-0 — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RP0R<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as ‘0’ bit 12-8 RP1R<4:0>: Peripheral Output Function is Assigned t
dsPIC33FJ12MC201/202 REGISTER 10-16: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2 U-0 U-0 U-0 — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RP5R<4:0> bit 15 bit 8 U-0 U-0 U-0 — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RP4R<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as ‘0’ bit 12-8 RP5R<4:0>: Peripheral Output Function is Assigned t
dsPIC33FJ12MC201/202 REGISTER 10-18: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4 U-0 U-0 U-0 — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RP9R<4:0> bit 15 bit 8 U-0 U-0 U-0 — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RP8R<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as ‘0’ bit 12-8 RP9R<4:0>: Peripheral Output Function is Assigned t
dsPIC33FJ12MC201/202 REGISTER 10-20: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6 U-0 U-0 U-0 — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RP13R<4:0> bit 15 bit 8 U-0 U-0 U-0 — — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RP12R<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as ‘0’ bit 12-8 RP13R<4:0>: Peripheral Output Function is Assigne
dsPIC33FJ12MC201/202 NOTES: DS70265E-page 140 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 11.0 Timer1 also supports these features: TIMER1 • Timer gate operation • Selectable prescaler settings • Timer operation during CPU Idle and Sleep modes • Interrupt on 16-bit Period register match or falling edge of external gate signal Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11.
dsPIC33FJ12MC201/202 REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON — TSIDL — — — — — bit 15 bit 8 U-0 R/W-0 — TGATE R/W-0 R/W-0 TCKPS<1:0> U-0 R/W-0 R/W-0 U-0 — TSYNC TCS — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 TON: Timer1 On bit 1 = Starts 16-bit Timer1 0 = Stops 16-bit Timer1 bit 14 Unimplemented: Read as ‘0’
dsPIC33FJ12MC201/202 12.0 TIMER2/3 FEATURE Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. “Timers” (DS70205) of the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip website (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices.
dsPIC33FJ12MC201/202 TIMER2/3 (32-BIT) BLOCK DIAGRAM(1) FIGURE 12-1: T2CK 1x Gate Sync 01 TCY 00 TCKPS<1:0> 2 TON Prescaler 1, 8, 64, 256 TGATE TCS TGATE Q 1 Set T3IF Q D CK 0 PR3 ADC Event Trigger(2) Equal PR2 Comparator MSb LSb TMR3 Reset TMR2 Sync 16 Read TMR2 Write TMR2 16 TMR3HLD 16 16 Data Bus<15:0> Note 1: 2: The 32-bit timer control bit, T32, must be set for 32-bit timer/counter operation. All control bits are respective to the T2CON register.
dsPIC33FJ12MC201/202 FIGURE 12-2: TIMER2 (16-BIT) BLOCK DIAGRAM TON T2CK TCKPS<1:0> 2 1x Gate Sync Prescaler 1, 8, 64, 256 01 00 TGATE TCS TCY 1 Set T2IF 0 Reset Equal Q D Q CK TMR2 TGATE Sync Comparator PR2 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 REGISTER 12-1: T2CON CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON — TSIDL — — — — — bit 15 bit 8 U-0 R/W-0 — TGATE R/W-0 R/W-0 TCKPS<1:0> R/W-0 U-0 R/W-0 U-0 T32 — TCS — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 TON: Timer2 On bit When T32 = 1: 1 = Starts 32-bit Timer2/3 0 = Stops 32-bit Timer2/3 When T32 = 0: 1 = Starts 16
dsPIC33FJ12MC201/202 REGISTER 12-2: T3CON CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON(2) — TSIDL(1) — — — — — bit 15 bit 8 U-0 R/W-0 — TGATE(2) R/W-0 R/W-0 TCKPS<1:0>(2) U-0 U-0 R/W-0 U-0 — — TCS(2) — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 TON: Timer3 On bit(2) 1 = Starts 16-bit Timer3 0 = Stops 16-bit Timer3 bit 14 Unimplemented: Read as
dsPIC33FJ12MC201/202 NOTES: DS70265E-page 148 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 13.0 1. INPUT CAPTURE Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. “Input Capture” (DS70198) of the “dsPIC33F/ PIC24H Family Reference Manual”, which is available from the Microchip website (www.microchip.com).
dsPIC33FJ12MC201/202 13.
dsPIC33FJ12MC201/202 14.0 The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events.
dsPIC33FJ12MC201/202 14.1 Output Compare Modes Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 14-1 lists the different bit settings for the Output Compare modes. Figure 14-2 illustrates the output compare operation for various modes. The user application must disable the associated timer when writing to the output compare control registers to avoid malfunctions. Note: See Section 13.
dsPIC33FJ12MC201/202 FIGURE 14-2: OUTPUT COMPARE OPERATION Output Compare Mode enabled Timer is reset on period match OCxRS TMRy OCxR Active-Low One-Shot (OCM = 001) Active-High One-Shot (OCM = 010) Toggle Mode (OCM = 011) Delayed One-Shot (OCM = 100) Continuous Pulse Mode (OCM = 101) PWM Mode (OCM = 110 or 111) © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 — — OCSIDL — — — — — bit 15 bit 8 U-0 U-0 U-0 R-0 HC R/W-0 — — — OCFLT OCTSEL R/W-0 R/W-0 R/W-0 OCM<2:0> bit 7 bit 0 Legend: HC = Cleared in Hardware HS = Set in Hardware R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-14 Unimplemented: Read as ‘0’ bit 13 OCSIDL: Stop
dsPIC33FJ12MC201/202 15.0 MOTOR CONTROL PWM MODULE Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. “Motor Control PWM” (DS70187) of the “dsPIC33F/ PIC24H Family Reference Manual”, which is available on the Microchip website (www.microchip.com).
dsPIC33FJ12MC201/202 FIGURE 15-1: 6-CHANNEL PWM MODULE BLOCK DIAGRAM (PWM1) PWM1CON1 PWM Enable and Mode SFRs PWM1CON2 P1DTCON1 Dead-Time Control SFRs P1DTCON2 P1FLTACON Fault Pin Control SFRs P1OVDCON PWM Manual Control SFR PWM Generator 3 16-bit Data Bus P1DC3 Buffer P1DC3 Comparator PWM Generator 2 P1TMR Channel 3 Dead-Time Generator and Override Logic PWM1H3 Channel 2 Dead-Time Generator and Override Logic PWM1H2 PWM1L3 Output PWM1L2 Driver Comparator PWM Generator 1 P1TPER Channel
dsPIC33FJ12MC201/202 FIGURE 15-2: 2-CHANNEL PWM MODULE BLOCK DIAGRAM (PWM2) PWM2CON1 PWM Enable and Mode SFRs PWM2CON2 P2DTCON1 Dead-Time Control SFRs P2DTCON2 P2FLTACON Fault Pin Control SFRs P2OVDCON PWM Manual Control SFR PWM Generator 1 16-bit Data Bus P2DC1Buffer P2DC1 Comparator PWM2H1 Channel 1 Dead-Time Generator and Override Logic PWM2L1 P2TMR Output Driver Comparator Block P2TPER P2TPER Buffer FLTA2 P2TCON Comparator SEVTDIR P2SECMP Special Event Postscaler Special Event Tr
dsPIC33FJ12MC201/202 REGISTER 15-1: PxTCON: PWM TIME BASE CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 PTEN — PTSIDL — — — — — bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PTOPS<3:0> R/W-0 R/W-0 PTCKPS<1:0> R/W-0 PTMOD<1:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 PTEN: PWM Time Base Timer Enable bit 1 = PWM time base is on 0 = PWM t
dsPIC33FJ12MC201/202 REGISTER 15-2: R-0 PxTMR: PWM TIMER COUNT VALUE REGISTER R/W-0 R/W-0 R/W-0 PTDIR R/W-0 R/W-0 R/W-0 R/W-0 PTMR<14:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PTMR<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 PTDIR: PWM Time Base Count Direction Status bit (read-only) 1 = PWM time base is counting down 0 = PWM
dsPIC33FJ12MC201/202 REGISTER 15-4: R/W-0 PxSECMP: SPECIAL EVENT COMPARE REGISTER R/W-0 R/W-0 R/W-0 SEVTDIR(1) R/W-0 R/W-0 R/W-0 R/W-0 SEVTCMP<14:8>(2) bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SEVTCMP<7:0>(2) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 SEVTDIR: Special Event Trigger Time Base Direction bit(1) 1 = A Special Event Trig
dsPIC33FJ12MC201/202 REGISTER 15-5: PWMxCON1: PWM CONTROL REGISTER 1(2) U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 — — — — — PMOD3 PMOD2 PMOD1 bit 15 bit 8 U-0 R/W-1 R/W-1 R/W-1 U-0 R/W-1 R/W-1 R/W-1 — PEN3H(1) PEN2H(1) PEN1H(1) — PEN3L(1) PEN2L(1) PEN1L(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-11 Unimplemented: Read as ‘0’ bit 10-8 PMOD4:PMOD1: PWM I/O
dsPIC33FJ12MC201/202 REGISTER 15-6: PWMxCON2: PWM CONTROL REGISTER 2 U-0 U-0 U-0 U-0 — — — — R/W-0 R/W-0 R/W-0 R/W-0 SEVOPS<3:0> bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 — — — — — IUE OSYNC UDIS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-12 Unimplemented: Read as ‘0’ bit 11-8 SEVOPS<3:0>: PWM Special Event Trigger Output Postsc
dsPIC33FJ12MC201/202 REGISTER 15-7: R/W-0 PxDTCON1: DEAD-TIME CONTROL REGISTER 1 R/W-0 R/W-0 R/W-0 DTBPS<1:0> R/W-0 R/W-0 R/W-0 R/W-0 DTB<5:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 DTAPS<1:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 DTA<5:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-14 DTBPS<1:0>: Dead-Time Unit B Prescale Select bits 11 = Clock period for Dead-Time Unit B is 8 TCY 10 =
dsPIC33FJ12MC201/202 REGISTER 15-8: PxDTCON2: DEAD-TIME CONTROL REGISTER 2(1) U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — DTS3A DTS3I DTS2A DTS2I DTS1A DTS1I bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-6 Unimplemented: Read as ‘0’ bit 5 DTS3A: Dead-Time Select for PWM3 Signal Going Active bi
dsPIC33FJ12MC201/202 REGISTER 15-9: PxFLTACON: FAULT A CONTROL REGISTER(1) U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — FAOV3H FAOV3L FAOV2H FAOV2L FAOV1H FAOV1L bit 15 bit 8 R/W-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 FLTAM — — — — FAEN3 FAEN2 FAEN1 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as ‘0’ bit 13-8 FAOV
dsPIC33FJ12MC201/202 REGISTER 15-10: PxOVDCON: OVERRIDE CONTROL REGISTER(1) U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 — — POVD3H POVD3L POVD2H POVD2L POVD1H POVD1L bit 15 bit 8 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — POUT3H POUT3L POUT2H POUT2L POUT1H POUT1L bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as ‘0
dsPIC33FJ12MC201/202 REGISTER 15-11: PxDC1: PWM DUTY CYCLE REGISTER 1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC1<15:8> bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PDC1<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-0 x = Bit is unknown PDC1<15:0>: PWM Duty Cycle 1 Value bits REGISTER 15-12: P1DC2: PWM DUTY CYCLE REGISTER 2 R/W-0 R/W-0 R/W-0
dsPIC33FJ12MC201/202 NOTES: DS70265E-page 168 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 16.0 This section describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data. QUADRATURE ENCODER INTERFACE (QEI) MODULE Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15.
dsPIC33FJ12MC201/202 REGISTER 16-1: QEIxCON: QEI CONTROL REGISTER R/W-0 U-0 R/W-0 R-0 R/W-0 CNTERR — QEISIDL INDEX UPDN R/W-0 R/W-0 R/W-0 QEIM<2:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 SWPAB PCDOUT TQGATE R/W-0 R/W-0 TQCKPS<1:0> R/W-0 R/W-0 R/W-0 POSRES TQCS UPDN_SRC bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 CNTERR: Count Error Status Flag bit
dsPIC33FJ12MC201/202 REGISTER 16-1: QEIxCON: QEI CONTROL REGISTER (CONTINUED) bit 4-3 TQCKPS<1:0>: Timer Input Clock Prescale Select bits 11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value (Prescaler utilized for 16-bit Timer mode only) bit 2 POSRES: Position Counter Reset Enable bit 1 = Index Pulse resets Position Counter 0 = Index Pulse does not reset Position Counter Note: Bit applies only when QEIM<2:0> = 100 or 110.
dsPIC33FJ12MC201/202 REGISTER 16-2: DFLTxCON: DIGITAL FILTER CONTROL REGISTER U-0 U-0 U-0 U-0 U-0 — — — — — R/W-0 R/W-0 R/W-0 IMV<2:0> CEID bit 15 bit 8 R/W-0 R/W-0 U-0 U-0 U-0 U-0 QEOUT QECK<2:0> — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as ‘0’ bit 10-9 IMV<1:0>: Index Match Value bits – These bits allow th
dsPIC33FJ12MC201/202 17.0 SERIAL PERIPHERAL INTERFACE (SPI) Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. “Serial Peripheral Interface (SPI)” (DS70206) of the “dsPIC33F/PIC24H Family Reference Manual”, which is available on the Microchip website (www.microchip.com).
dsPIC33FJ12MC201/202 REGISTER 17-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 SPIEN — SPISIDL — — — — — bit 15 bit 8 U-0 R/C-0 U-0 U-0 U-0 U-0 R-0 R-0 — SPIROV — — — — SPITBF SPIRBF bit 7 bit 0 Legend: C = Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 SPIEN: SPIx Enable bit 1 = Enables module and configures
dsPIC33FJ12MC201/202 REGISTER 17-2: SPIXCON1: SPIx CONTROL REGISTER 1 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — — DISSCK DISSDO MODE16 SMP CKE(1) bit 15 bit 8 R/W-0 R/W-0 R/W-0 SSEN(2) CKP MSTEN R/W-0 R/W-0 R/W-0 R/W-0 SPRE<2:0>(3) R/W-0 PPRE<1:0>(3) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as ‘0’ bit 12 DISS
dsPIC33FJ12MC201/202 REGISTER 17-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED) bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)(3) 111 = Secondary prescale 1:1 110 = Secondary prescale 2:1 . . . 000 = Secondary prescale 8:1 bit 1-0 PPRE<1:0>: Primary Prescale bits (Master mode)(3) 11 = Primary prescale 1:1 10 = Primary prescale 4:1 01 = Primary prescale 16:1 00 = Primary prescale 64:1 Note 1: 2: 3: The CKE bit is not used in the Framed SPI modes.
dsPIC33FJ12MC201/202 REGISTER 17-3: SPIxCON2: SPIx CONTROL REGISTER 2 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 FRMEN SPIFSD FRMPOL — — — — — bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 U-0 — — — — — — FRMDLY — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 FRMEN: Framed SPIx Support bit 1 = Framed SPIx support enabled (SSx pin used as frame syn
dsPIC33FJ12MC201/202 NOTES: DS70265E-page 178 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 18.0 INTER-INTEGRATED CIRCUIT™ (I2C™) Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. “Inter-Integrated Circuit™ (I2C™)” (DS70195) of the “dsPIC33F/PIC24H Family Reference Manual”, which is available on the Microchip website (www.microchip.com).
dsPIC33FJ12MC201/202 FIGURE 18-1: I2C™ BLOCK DIAGRAM (X = 1) Internal Data Bus I2CxRCV SCLx Read Shift Clock I2CxRSR LSb SDAx Address Match Match Detect Write I2CxMSK Write Read I2CxADD Read Start and Stop Bit Detect Write Start and Stop Bit Generation Control Logic I2CxSTAT Collision Detect Read Write I2CxCON Acknowledge Generation Read Clock Stretching Write I2CxTRN LSb Read Shift Clock Reload Control BRG Down Counter Write I2CxBRG Read TCY/2 DS70265E-page 180 © 2007-2011 Micro
dsPIC33FJ12MC201/202 REGISTER 18-1: I2CxCON: I2Cx CONTROL REGISTER R/W-0 U-0 R/W-0 R/W-1 HC R/W-0 R/W-0 R/W-0 R/W-0 I2CEN — I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 HC R/W-0 HC R/W-0 HC R/W-0 HC R/W-0 HC GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN bit 7 bit 0 Legend: U = Unimplemented bit, read as ‘0’ R = Readable bit W = Writable bit HS = Set in hardware HC = Cleared in hardware -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cle
dsPIC33FJ12MC201/202 REGISTER 18-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED) bit 5 ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence.
dsPIC33FJ12MC201/202 REGISTER 18-2: I2CxSTAT: I2Cx STATUS REGISTER R-0 HSC R-0 HSC U-0 U-0 U-0 R/C-0 HS R-0 HSC R-0 HSC ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 bit 15 bit 8 R/C-0 HS R/C-0 HS R-0 HSC R/C-0 HSC R/C-0 HSC R-0 HSC R-0 HSC R-0 HSC IWCOL I2COV D_A P S R_W RBF TBF bit 7 bit 0 Legend: U = Unimplemented bit, read as ‘0’ R = Readable bit W = Writable bit HS = Set in hardware HSC = Hardware set/cleared -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared
dsPIC33FJ12MC201/202 REGISTER 18-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED) bit 3 S: Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
dsPIC33FJ12MC201/202 REGISTER 18-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 — — — — — — AMSK9 AMSK8 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 AMSK7 AMSK6 AMSK5 AMSK4 AMSK3 AMSK2 AMSK1 AMSK0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15-10 Unimplemented: Read as ‘0’ bit 9-0 AMS
dsPIC33FJ12MC201/202 NOTES: DS70265E-page 186 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART) Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. “UART” (DS70188) of the “dsPIC33F/PIC24H Family Reference Manual”, which is available on the Microchip website (www.microchip.com).
dsPIC33FJ12MC201/202 REGISTER 19-1: UxMODE: UARTx MODE REGISTER R/W-0 U-0 R/W-0 R/W-0 R/W-0 U-0 UARTEN(1) — USIDL IREN(2) RTSMD — R/W-0 R/W-0 UEN<1:0> bit 15 bit 8 R/W-0 HC R/W-0 R/W-0 HC R/W-0 R/W-0 WAKE LPBACK ABAUD URXINV BRGH R/W-0 R/W-0 PDSEL<1:0> R/W-0 STSEL bit 7 bit 0 Legend: HC = Hardware cleared R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 UARTEN: U
dsPIC33FJ12MC201/202 REGISTER 19-1: UxMODE: UARTx MODE REGISTER (CONTINUED) bit 4 URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is ‘0’ 0 = UxRX Idle state is ‘1’ bit 3 BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode) bit 2-1 PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-
dsPIC33FJ12MC201/202 REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER R/W-0 R/W-0 R/W-0 U-0 R/W-0 HC R/W-0 R-0 R-1 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN(1) UTXBF TRMT bit 15 bit 8 R/W-0 R/W-0 URXISEL<1:0> R/W-0 R-1 R-0 R-0 R/C-0 R-0 ADDEN RIDLE PERR FERR OERR URXDA bit 7 bit 0 Legend: HC = Hardware cleared R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 1
dsPIC33FJ12MC201/202 REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED) bit 5 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode enabled.
dsPIC33FJ12MC201/202 NOTES: DS70265E-page 192 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 20.0 10-BIT/12-BIT ANALOG-TODIGITAL CONVERTER (ADC) Note 1: This data sheet summarizes the features of the dsPIC33FJ12MC201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. “Analog-toDigital Converter (ADC)” (DS70183) of the “dsPIC33F/PIC24H Family Reference Manual”, which is available on the Microchip website (www.microchip.com).
dsPIC33FJ12MC201/202 FIGURE 20-1: ADC1 BLOCK DIAGRAM FOR dsPIC33FJ12MC201 DEVICES AN0 AN7 S/H0 Channel Scan + CH0SA<4:0> CH0 CH0SB<4:0> - CSCNA AN1 VREFL CH0NA CH0NB VREF+(1) AVDD VREF-(1) AVSS AN0 AN3 S/H1 + - CH123SA CH123SB CH1(2) AN6 ADC1BUF0 VREFL ADC1BUF1 ADC1BUF2 VREFH CH123NA CH123NB VREFL SAR ADC AN1 S/H2 CH123SA CH123SB CH2 (2) + ADC1BUFE - ADC1BUFF AN7 VREFL CH123NA CH123NB AN2 S/H3 + CH123SA CH123SB CH3(2) - VREFL CH123NA CH123NB Alternate Input Selection Note 1: 2:
dsPIC33FJ12MC201/202 FIGURE 20-2: ADC1 BLOCK DIAGRAM FOR dsPIC33FJ12MC202 DEVICES AN0 AN9 Channel Scan S/H0 + CH0SA<4:0> CH0 CH0SB<4:0> - CSCNA AN1 VREFL VREF-(1) AVSS CH0NA CH0NB VREF+(1) AVDD AN0 AN3 S/H1 + - CH123SA CH123SB CH1(2) AN6 AN9 ADC1BUF0 VREFL ADC1BUF1 VREFL ADC1BUF2 VREFH CH123NA CH123NB SAR ADC AN1 AN4 S/H2 CH123SA CH123SB CH2 (2) + ADC1BUFE - ADC1BUFF AN7 VREFL CH123NA CH123NB AN2 AN5 S/H3 + CH123SA CH123SB CH3(2) - AN8 VREFL CH123NA CH123NB Alternate Input Sele
dsPIC33FJ12MC201/202 FIGURE 20-3: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM ADxCON3<15> ADC Internal RC Clock(2) 1 TAD ADxCON3<5:0> 0 6 TOSC(1) X2 TCY ADC Conversion Clock Multiplier 1, 2, 3, 4, 5,..., 64 Note 1: 2: Refer to Figure 8-2 for the derivation of FOSC when the PLL is enabled. If the PLL is not used, FOSC is equal to the clock frequency. TOSC = 1/FOSC. See the ADC Electrical Characteristics for the exact RC clock value. DS70265E-page 196 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 REGISTER 20-1: AD1CON1: ADC1 CONTROL REGISTER 1 R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 ADON — ADSIDL — — AD12B R/W-0 R/W-0 FORM<1:0> bit 15 bit 8 R/W-0 R/W-0 R/W-0 SSRC<2:0> U-0 R/W-0 R/W-0 R/W-0 HC,HS R/C-0 HC, HS — SIMSAM ASAM SAMP DONE bit 7 bit 0 Legend: HC = Cleared by hardware HS = Set by hardware R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15
dsPIC33FJ12MC201/202 REGISTER 20-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED) bit 2 ASAM: ADC Sample Auto-Start bit 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set. 0 = Sampling begins when SAMP bit is set bit 1 SAMP: ADC Sample Enable bit 1 = ADC sample-and-hold amplifiers are sampling 0 = ADC sample-and-hold amplifiers are holding If ASAM = 0, software can write ‘1’ to begin sampling. Automatically set by hardware if ASAM = 1.
dsPIC33FJ12MC201/202 REGISTER 20-2: R/W-0 AD1CON2: ADC1 CONTROL REGISTER 2 R/W-0 R/W-0 VCFG<2:0> U-0 U-0 R/W-0 — — CSCNA R/W-0 R/W-0 CHPS<1:0> bit 15 bit 8 R-0 U-0 BUFS — R/W-0 R/W-0 R/W-0 R/W-0 SMPI<3:0> R/W-0 R/W-0 BUFM ALTS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-13 x = Bit is unknown VCFG<2:0>: Converter Voltage Reference Configuration bits 000 001 010 01
dsPIC33FJ12MC201/202 REGISTER 20-3: AD1CON3: ADC1 CONTROL REGISTER 3 R/W-0 U-0 U-0 ADRC — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SAMC<4:0>(1) bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ADCS<7:0>(2) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 ADRC: ADC Conversion Clock Source bit 1 = ADC internal RC clock 0 = Clock derived from system clock bit 14-13 Unimpl
dsPIC33FJ12MC201/202 REGISTER 20-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER U-0 U-0 U-0 U-0 U-0 — — — — — R/W-0 R/W-0 CH123NB<1:0> R/W-0 CH123SB bit 15 bit 8 U-0 U-0 U-0 U-0 U-0 — — — — — R/W-0 R/W-0 CH123NA<1:0> R/W-0 CH123SA bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-11 Unimplemented: Read as ‘0’ bit 10-9 CH123NB<1:0>: Channel 1, 2, 3 Negativ
dsPIC33FJ12MC201/202 REGISTER 20-4: bit 2-1 AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER (CONTINUED) CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits If AD12B = 1: 11 = Reserved 10 = Reserved 01 = Reserved 00 = Reserved If AD12B = 0: 11 = Reserved 10 = Reserved 01 = CH1, CH2, CH3 negative input is VREF00 = CH1, CH2, CH3 negative input is VREF- bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ12MC201 devices only: If AD12B = 1: 1 = Reserved 0 =
dsPIC33FJ12MC201/202 REGISTER 20-5: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER R/W-0 U-0 U-0 CH0NB — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CH0SB<4:0> bit 15 bit 8 R/W-0 U-0 U-0 CH0NA — — R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CH0SA<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 CH0NB: Channel 0 Negative Input Select for Sample B bit 1 = Channel 0 negative input is AN1 0 = Ch
dsPIC33FJ12MC201/202 ,2 REGISTER 20-6: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW(1,2) U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — bit 15 bit 8 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — CSS5 CSS4 CSS3 CSS2 CSS1 CSS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15-6 Unimplemented: Read as ‘0’ bit 5-0 CSS<5:0>: ADC Input Scan Selection bits 1 = Sel
dsPIC33FJ12MC201/202 21.0 SPECIAL FEATURES Note: 21.1 dsPIC33FJ12MC201/202 devices provide nonvolatile memory implementation for device configuration bits. Refer to Section 25. “Device Configuration” (DS70194) of the “dsPIC33F/PIC24H Family Reference Manual”, for more information on this implementation. This data sheet summarizes the features of the dsPIC33FJ12MC201/202 devices. It is not intended to be a comprehensive reference source.
dsPIC33FJ12MC201/202 TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION RTSP Effect Bit Field Register BWRP FBS Immediate Boot Segment Program Flash Write Protection 1 = Boot segment can be written 0 = Boot segment is write-protected BSS<2:0> FBS Immediate Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment Description Boot space is 256 Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0003FE 010 = High secu
dsPIC33FJ12MC201/202 TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED) Bit Field Register FWDTEN FWDT WINDIS FWDT WDTPRE FWDT WDTPOST<3:0> FWDT RTSP Effect Description Immediate Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.
dsPIC33FJ12MC201/202 21.2 On-Chip Voltage Regulator All of the dsPIC33FJ12MC201/202 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJ12MC201/202 family incorporate an on-chip regulator that allows the device to run its core logic from VDD. The regulator provides power to the core from the other VDD pins.
dsPIC33FJ12MC201/202 21.4 21.4.2 Watchdog Timer (WDT) For dsPIC33FJ12MC201/202 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled. 21.4.1 PRESCALER/POSTSCALER The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit.
dsPIC33FJ12MC201/202 21.5 JTAG Interface dsPIC33FJ12MC201/202 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface will be provided in future revisions of the document. 21.6 In-Circuit Serial Programming The dsPIC33FJ12MC201/202 devices can be serially programmed while in the end application circuit.
dsPIC33FJ12MC201/202 22.0 Note: INSTRUCTION SET SUMMARY This data sheet summarizes the features of the dsPIC33FJ12MC201/202 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC33F/PIC24H Family Reference Manual”. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections. The dsPIC33F instruction set is identical to that of the dsPIC30F.
dsPIC33FJ12MC201/202 Most instructions are a single word. Certain doubleword instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are ‘0’s. If this second word is executed as an instruction (by itself), it will execute as a NOP. The double-word instructions execute in two instruction cycles.
dsPIC33FJ12MC201/202 TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED) Field Description Wm*Wm Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7} Wm*Wn Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7} Wn One of 16 working registers ∈ {W0..W15} Wnd One of 16 destination working registers ∈ {W0..W15} Wns One of 16 source working registers ∈ {W0..
dsPIC33FJ12MC201/202 TABLE 22-2: Base Instr # 1 2 3 4 INSTRUCTION SET OVERVIEW Assembly Mnemonic ADD ADDC AND ASR Assembly Syntax # of # of Words Cycles Description Status Flags Affected ADD Acc Add Accumulators 1 1 ADD f f = f + WREG 1 1 OA,OB,SA,SB C,DC,N,OV,Z ADD f,WREG WREG = f + WREG 1 1 C,DC,N,OV,Z ADD #lit10,Wn Wd = lit10 + Wd 1 1 C,DC,N,OV,Z ADD Wb,Ws,Wd Wd = Wb + Ws 1 1 C,DC,N,OV,Z ADD Wb,#lit5,Wd Wd = Wb + lit5 1 1 C,DC,N,OV,Z OA,OB,SA,SB ADD Wso,#S
dsPIC33FJ12MC201/202 TABLE 22-2: Base Instr # 10 11 12 13 INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Mnemonic BTSC BTSS BTST BTSTS Assembly Syntax Description # of # of Words Cycles Status Flags Affected BTSC f,#bit4 Bit Test f, Skip if Clear 1 1 (2 or 3) None BTSC Ws,#bit4 Bit Test Ws, Skip if Clear 1 1 (2 or 3) None BTSS f,#bit4 Bit Test f, Skip if Set 1 1 (2 or 3) None BTSS Ws,#bit4 Bit Test Ws, Skip if Set 1 1 (2 or 3) None BTST f,#bit4 Bit Test f 1 1 Z BTST
dsPIC33FJ12MC201/202 TABLE 22-2: Base Instr # 29 INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Mnemonic DIV Assembly Syntax # of # of Words Cycles Description Status Flags Affected DIV.S Wm,Wn Signed 16/16-bit Integer Divide 1 18 N,Z,C,OV DIV.SD Wm,Wn Signed 32/16-bit Integer Divide 1 18 N,Z,C,OV DIV.U Wm,Wn Unsigned 16/16-bit Integer Divide 1 18 N,Z,C,OV DIV.
dsPIC33FJ12MC201/202 TABLE 22-2: Base Instr # 48 INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Mnemonic MPY Assembly Syntax Description # of # of Words Cycles Status Flags Affected MPY Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply Wm by Wn to Accumulator 1 1 OA,OB,OAB, SA,SB,SAB MPY Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square Wm to Accumulator 1 1 OA,OB,OAB, SA,SB,SAB 49 MPY.N MPY.
dsPIC33FJ12MC201/202 TABLE 22-2: Base Instr # 66 67 INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Mnemonic RRNC SAC Assembly Syntax # of # of Words Cycles Description Status Flags Affected RRNC f f = Rotate Right (No Carry) f 1 1 RRNC f,WREG WREG = Rotate Right (No Carry) f 1 1 N,Z N,Z RRNC Ws,Wd Wd = Rotate Right (No Carry) Ws 1 1 N,Z SAC Acc,#Slit4,Wdo Store Accumulator 1 1 None SAC.
dsPIC33FJ12MC201/202 23.
dsPIC33FJ12MC201/202 23.2 MPLAB C Compilers for Various Device Families The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip’s PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger. 23.
dsPIC33FJ12MC201/202 23.7 MPLAB SIM Software Simulator The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC® DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis.
dsPIC33FJ12MC201/202 23.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express 23.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits The PICkit™ 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip’s Flash families of microcontrollers.
dsPIC33FJ12MC201/202 24.0 ELECTRICAL CHARACTERISTICS This section provides an overview of dsPIC33FJ12MC201/202 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available. Absolute maximum ratings for the dsPIC33FJ12MC201/202 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability.
dsPIC33FJ12MC201/202 24.1 DC Characteristics TABLE 24-1: OPERATING MIPS VS. VOLTAGE VDD Range (in Volts) Characteristic Max MIPS Temp Range (in °C) dsPIC33FJ12MC201/202 — 3.0-3.6V -40°C to +85°C 40 — 3.0-3.
dsPIC33FJ12MC201/202 TABLE 24-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended DC CHARACTERISTICS Param Symbol No. Characteristic Min Typ(1) Max Units 3.0 — 3.6 V Conditions Operating Voltage DC10 Supply Voltage VDD (2) Industrial and Extended DC12 VDR RAM Data Retention Voltage 1.
dsPIC33FJ12MC201/202 TABLE 24-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended DC CHARACTERISTICS Parameter No.
dsPIC33FJ12MC201/202 TABLE 24-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended DC CHARACTERISTICS Parameter No.
dsPIC33FJ12MC201/202 TABLE 24-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended DC CHARACTERISTICS Parameter No.
dsPIC33FJ12MC201/202 TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended DC CHARACTERISTICS Param Symbol No. VIL Characteristic Min Typ(1) Max Units Conditions Input Low Voltage DI10 I/O pins VSS — 0.2 VDD V DI15 MCLR VSS — 0.2 VDD V DI16 I/O Pins with OSC1 or SOSCI VSS — 0.2 VDD V DI18 SDA, SCL VSS — 0.
dsPIC33FJ12MC201/202 TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended DC CHARACTERISTICS Param Symbol No.
dsPIC33FJ12MC201/202 TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended DC CHARACTERISTICS Param Symbol No.
dsPIC33FJ12MC201/202 TABLE 24-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended DC CHARACTERISTICS Param Symbol No. VOL Characteristic Min Typ Max Units Conditions Output Low Voltage DO10 I/O ports — — 0.4 V IOL = 2 mA, VDD = 3.3V DO16 OSC2/CLKO — — 0.4 V IOL = 2 mA, VDD = 3.3V VOH Output High Voltage DO20 I/O ports 2.
dsPIC33FJ12MC201/202 TABLE 24-12: DC CHARACTERISTICS: PROGRAM MEMORY Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended DC CHARACTERISTICS Param Symbol No. Characteristic(3) Min Typ(1) Max Units Conditions Program Flash Memory D130a EP Cell Endurance 10,000 — — E/W D131 VPR VDD for Read VMIN — 3.
dsPIC33FJ12MC201/202 24.2 AC Characteristics and Timing Parameters This section defines dsPIC33FJ12MC201/202 AC characteristics and timing parameters. TABLE 24-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended Operating voltage VDD range as described in Section 24.1 “DC Characteristics”.
dsPIC33FJ12MC201/202 FIGURE 24-2: EXTERNAL CLOCK TIMING Q1 Q2 Q3 Q4 Q1 Q2 OS30 OS30 Q3 Q4 OSC1 OS20 OS31 OS31 OS25 CLKO OS41 OS40 TABLE 24-16: EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param No.
dsPIC33FJ12MC201/202 TABLE 24-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param Symbol No.
dsPIC33FJ12MC201/202 FIGURE 24-3: CLKO AND I/O TIMING CHARACTERISTICS I/O Pin (Input) DI35 DI40 I/O Pin (Output) New Value Old Value DO31 DO32 Note: Refer to Figure 24-1 for load conditions. TABLE 24-20: I/O TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param No.
dsPIC33FJ12MC201/202 FIGURE 24-4: VDD RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS SY12 MCLR SY10 Internal POR PWRT Time-out OSC Time-out SY11 SY30 Internal Reset Watchdog Timer Reset SY13 SY20 SY13 I/O Pins SY35 FSCM Delay Note: Refer to Figure 24-1 for load conditions. DS70265E-page 238 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 TABLE 24-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param Symbol No.
dsPIC33FJ12MC201/202 FIGURE 24-5: TIMER1, 2, 3 AND 4 EXTERNAL CLOCK TIMING CHARACTERISTICS TxCK Tx11 Tx10 Tx15 OS60 Tx20 TMRx Note: Refer to Figure 24-1 for load conditions. TABLE 24-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended AC CHARACTERISTICS Param No.
dsPIC33FJ12MC201/202 TABLE 24-23: TIMER2 AND TIMER4 EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param No.
dsPIC33FJ12MC201/202 FIGURE 24-6: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS QEB TQ11 TQ10 TQ15 TQ20 POSCNT TABLE 24-25: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param No.
dsPIC33FJ12MC201/202 TABLE 24-26: INPUT CAPTURE TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param No. Symbol IC10 TccL Characteristic(1) ICx Input Low Time Min No Prescaler TccH ICx Input High Time No Prescaler Note 1: TccP ICx Input Period Conditions — — ns 10 — ns 0.
dsPIC33FJ12MC201/202 TABLE 24-28: SIMPLE OC/PWM MODE TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param No.
dsPIC33FJ12MC201/202 TABLE 24-29: MOTOR CONTROL PWM MODULE TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param No.
dsPIC33FJ12MC201/202 TABLE 24-30: QUADRATURE DECODER TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param No.
dsPIC33FJ12MC201/202 TABLE 24-31: QEI INDEX PULSE TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param No.
dsPIC33FJ12MC201/202 TABLE 24-32: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY Standard Operating Conditions: 3.0V to 3.
dsPIC33FJ12MC201/202 TABLE 24-33: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS S t a n d a r d O p e r a t i n g C o n d i t i o n s : 3 . 0 V t o 3 . 6 V ( u n l e s s o t h e r w i s e s t a t e d ) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param No.
dsPIC33FJ12MC201/202 FIGURE 24-16: SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING CHARACTERISTICS SP36 SCKx (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCKx (CKP = 1) SP35 Bit 14 - - - - - -1 MSb SDOx SP30, SP31 SP40 SDIx LSb MSb In LSb In Bit 14 - - - -1 SP41 Note: Refer to Figure 24-1 for load conditions. TABLE 24-34: SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.
dsPIC33FJ12MC201/202 FIGURE 24-17: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = X, SMP = 1) TIMING CHARACTERISTICS SCKx (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCKx (CKP = 1) SP35 MSb SDOx Bit 14 - - - - - -1 SP30, SP31 SDIx MSb In LSb SP30, SP31 LSb In Bit 14 - - - -1 SP40 SP41 Note: Refer to Figure 24-1 for load conditions. TABLE 24-35: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.
dsPIC33FJ12MC201/202 FIGURE 24-18: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS SP60 SSx SP52 SP50 SCKx (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCKx (CKP = 1) SP35 MSb SDOx Bit 14 - - - - - -1 LSb SP30,SP31 SDI SDIx MSb In Bit 14 - - - -1 SP51 LSb In SP41 SP40 Note: Refer to Figure 24-1 for load conditions. DS70265E-page 252 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 TABLE 24-36: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param No.
dsPIC33FJ12MC201/202 FIGURE 24-19: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS SP60 SSx SP52 SP50 SCKx (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCKx (CKP = 1) SP35 SP52 MSb SDOx Bit 14 - - - - - -1 LSb SP30,SP31 SDI SDIx MSb In Bit 14 - - - -1 SP51 LSb In SP41 SP40 Note: Refer to Figure 24-1 for load conditions. DS70265E-page 254 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 TABLE 24-37: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param No.
dsPIC33FJ12MC201/202 FIGURE 24-20: SPIx SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS SSX SP52 SP50 SCKX (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCKX (CKP = 1) SP35 MSb SDOX Bit 14 - - - - - -1 LSb SP51 SP30,SP31 SDIX MSb In Bit 14 - - - -1 LSb In SP41 SP40 Note: Refer to Figure 24-1 for load conditions. DS70265E-page 256 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 TABLE 24-38: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param No.
dsPIC33FJ12MC201/202 FIGURE 24-21: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS SSX SP52 SP50 SCKX (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCKX (CKP = 1) SP35 MSb SDOX Bit 14 - - - - - -1 LSb SP51 SP30,SP31 SDIX MSb In Bit 14 - - - -1 LSb In SP41 SP40 Note: Refer to Figure 24-1 for load conditions. DS70265E-page 258 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 TABLE 24-39: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param No.
dsPIC33FJ12MC201/202 FIGURE 24-22: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE) SCLx IM31 IM34 IM30 IM33 SDAx Stop Condition Start Condition Note: Refer to Figure 24-1 for load conditions. FIGURE 24-23: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE) IM20 IM21 IM11 IM10 SCLx IM11 IM26 IM10 IM25 IM33 SDAx In IM40 IM40 IM45 SDAx Out Note: Refer to Figure 24-1 for load conditions. DS70265E-page 260 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 TABLE 24-40: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param Symbol No.
dsPIC33FJ12MC201/202 FIGURE 24-24: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE) SCLx IS34 IS31 IS30 IS33 SDAx Stop Condition Start Condition FIGURE 24-25: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE) IS20 IS21 IS11 IS10 SCLx IS30 IS26 IS31 IS25 IS33 SDAx In IS40 IS40 IS45 SDAx Out DS70265E-page 262 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 TABLE 24-41: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param.
dsPIC33FJ12MC201/202 TABLE 24-42: ADC MODULE SPECIFICATIONS AC CHARACTERISTICS Param Symbol No. Characteristic Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended Min. Typ Max. Units Lesser of VDD + 0.3 or 3.6 V VSS + 0.3 V Conditions Device Supply AD01 AVDD Module VDD Supply(2) Greater of VDD – 0.3 or 3.0 — VSS – 0.
dsPIC33FJ12MC201/202 TABLE 24-43: ADC MODULE SPECIFICATIONS (12-BIT MODE) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic Min. Typ Max.
dsPIC33FJ12MC201/202 TABLE 24-44: ADC MODULE SPECIFICATIONS (10-BIT MODE) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic Min. Typ Max. Units Conditions ADC Accuracy (10-bit Mode) – Measurements with external VREF+/VREF-(3) AD20b Nr Resolution(4) AD21b INL Integral Nonlinearity -1.5 — +1.
dsPIC33FJ12MC201/202 FIGURE 24-26: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000) AD50 ADCLK Instruction Execution Set SAMP Clear SAMP SAMP AD61 AD60 TSAMP AD55 DONE ADxIF 1 2 3 4 5 6 7 8 9 1 – Software sets ADxCON. SAMP to start sampling. 5 – Convert bit 11. 2 – Sampling starts after discharge period. TSAMP is described in Section 16. “Analog-to-Digital Converter (ADC)” (DS70183) in the “dsPIC33F/PIC24H Family Reference Manual”. 6 – Convert bit 10.
dsPIC33FJ12MC201/202 FIGURE 24-27: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000) AD50 ADCLK Instruction Execution Set SAMP Clear SAMP SAMP AD61 AD60 AD55 TSAMP AD55 DONE ADxIF 1 2 3 4 5 6 7 8 5 6 7 8 1 – Software sets ADxCON. SAMP to start sampling. 2 – Sampling starts after discharge period. TSAMP is described in Section 16. “Analog-to-Digital Converter (ADC)” (DS70183) in the “dsPIC33F/PIC24H Family Reference Manual”.
dsPIC33FJ12MC201/202 TABLE 24-46: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended AC CHARACTERISTICS Param Symbol No. Characteristic Min. Typ(1) Max.
dsPIC33FJ12MC201/202 NOTES: DS70265E-page 270 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 25.0 PACKAGING INFORMATION 25.
dsPIC33FJ12MC201/202 25.1 Package Marking Information (Continued) 28-Lead SSOP XXXXXXXXXXXX XXXXXXXXXXXX YYWWNNN 28-Lead QFN XXXXXXXX XXXXXXXX YYWWNNN Legend: XX...
dsPIC33FJ12MC201/202 25.2 Package Details 20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging N E1 NOTE 1 1 2 3 D E A2 A L c A1 b1 b eB e Units Dimension Limits Number of Pins INCHES MIN N NOM MAX 20 Pitch e Top to Seating Plane A – – .210 Molded Package Thickness A2 .115 .130 .195 Base to Seating Plane A1 .
dsPIC33FJ12MC201/202 20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D N E E1 NOTE 1 1 2 e b c A2 A φ A1 L1 Units Dimension Limits Number of Pins L MILLIMETERS MIN N NOM MAX 20 Pitch e Overall Height A – 0.65 BSC – 2.00 Molded Package Thickness A2 1.65 1.75 1.85 Standoff A1 0.05 – – Overall Width E 7.40 7.80 8.
dsPIC33FJ12MC201/202 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS70265E-page 276 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS70265E-page 278 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging N NOTE 1 E1 1 2 3 D E A2 A L c b1 A1 b e eB Units Dimension Limits Number of Pins INCHES MIN N NOM MAX 28 Pitch e Top to Seating Plane A – – .200 Molded Package Thickness A2 .120 .135 .150 Base to Seating Plane A1 .
dsPIC33FJ12MC201/202 /HDG 3ODVWLF 6KULQN 6PDOO 2XWOLQH 66 ± PP %RG\ >6623@ 1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ D N E E1 1 2 NOTE 1 b e c A2 A φ A1 L L1 8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 0,//,0(7(56 0,1 1 120 0$; 3LWFK H 2YHUDOO +HLJKW $ ± %6& ± 0ROGHG 3DFNDJH 7KLFNQHVV $ 6WDQGRII $ ± ± 2YHUDOO :LGWK ( 0
dsPIC33FJ12MC201/202 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS70265E-page 282 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS70265E-page 284 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D D2 EXPOSED PAD e E b E2 2 2 1 1 N K N NOTE 1 L BOTTOM VIEW TOP VIEW A A3 A1 Units Dimension Limits Number of Pins MILLIMETERS MIN N NOM MAX 28 Pitch e Overall Height A 0.80 0.65 BSC 0.90 1.00 Standoff A1 0.00 0.02 0.
dsPIC33FJ12MC201/202 /HDG 3ODVWLF 4XDG )ODW 1R /HDG 3DFNDJH 0/ ± [ PP %RG\ >4)1@ ZLWK PP &RQWDFW /HQJWK 1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ DS70265E-page 286 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 APPENDIX A: REVISION HISTORY Revision A (January 2007) This is the initial released version of this document. Revision B (May 2007) This revision includes the following corrections and updates: • Minor typographical and formatting corrections throughout the data sheet text. • New content: - Addition of bullet item (16-word conversion result buffer) (see Section 19.
dsPIC33FJ12MC201/202 Revision C (June 2008) This revision includes minor typographical and formatting changes throughout the data sheet text. The major changes are referenced by their respective section in the following table. TABLE 25-1: MAJOR SECTION UPDATES Section Name “High-Performance, 16-bit Digital Signal Controllers” Update Description Added SSOP to list of available 28-pin packages (see “Packaging:” and Table 1).
dsPIC33FJ12MC201/202 TABLE 25-1: MAJOR SECTION UPDATES Section Name Section 9.0 “I/O Ports” Update Description Added paragraph and Table 9-1 to Section 9.1.1 “Open-Drain Configuration”, which provides details on I/O pins and their functionality. Removed the following sections, which are now available in the related section of the dsPIC33F Family Reference Manual: • 9.4.2 “Available Peripherals” • 9.4.3.3 “Mapping” • 9.4.5 “Considerations for Peripheral Pin Selection” Section 13.
dsPIC33FJ12MC201/202 TABLE 25-1: MAJOR SECTION UPDATES Section Name Update Description Section 17.0 “Inter-Integrated Circuit™ (I2C™)” Removed the following sections, which are now available in the related section of the dsPIC33F Family Reference Manual: • 17.3 “I2C Interrupts” • 17.4 “Baud Rate Generator” (retained Figure 17-1: I2C Block Diagram) • 17.5 “I2C Module Addresses • 17.6 “Slave Address Masking” • 17.7 “IPMI Support” • 17.8 “General Call Address Support” • 17.
dsPIC33FJ12MC201/202 TABLE 25-1: MAJOR SECTION UPDATES Section Name Section 19.0 “10-bit/12-bit Analog-to-Digital Converter (ADC)” Update Description Updated ADC Conversion Clock Select bits in the AD1CON3 register from ADCS<5:0> to ADCS<7:0>. Any references to these bits have also been updated throughout this data sheet (Register 19-3). Replaced Figure 19-1 (ADC1 Module Block Diagram for dsPIC33FJ12MC201) and added Figure 19-2 (ADC1 Block Diagram for dsPIC33FJ12MC202).
dsPIC33FJ12MC201/202 TABLE 25-1: MAJOR SECTION UPDATES Section Name Section 23.0 “Electrical Characteristics” Update Description Updated Max MIPS value for -40ºC to +125ºC temperature range in Operating MIPS vs. Voltage (see Table 23-1). Added 20-pin SOIC and 28-pin SSOP package information to Thermal Packaging Characteristics and updated Typical values for all devices (see Table 23-3). Removed Typ value for parameter DC12 (see Table 23-4).
dsPIC33FJ12MC201/202 TABLE 25-1: MAJOR SECTION UPDATES Section Name Update Description Section 24.0 “Packaging Information” Added 28-lead SSOP package marking information. “Product Identification System” Added Plastic Shrink Small Outline (SSOP) package information. Revision D (June 2009) This revision includes minor typographical and formatting changes throughout the data sheet text.
dsPIC33FJ12MC201/202 Revision E (July 2011) This revision includes formatting changes and minor typographical throughout the data sheet text. Global changes include: • Removed Preliminary marking from the footer • Updated all family reference manual information in the note boxes located at the beginning of most chapters • Changed all instances of VCAP/VDDCORE to VCAP All other major changes are referenced by their respective section in the following table.
dsPIC33FJ12MC201/202 TABLE 25-3: MAJOR SECTION UPDATES (CONTINUED) Section Name Update Description Section 24.0 “Electrical Characteristics” Updated the following Absolute Maximum Ratings: • Storage temperature • Voltage on any pin that is not 5V tolerant with respect to VSS • Voltage on any 5V tolerant pin with respect to VSS when VDD ≥ 3.0V • Voltage on any 5V tolerant pin with respect to VSS when VDD < 3.
dsPIC33FJ12MC201/202 NOTES: DS70265E-page 296 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 INDEX A AC Characteristics ............................................................ 234 Internal RC Accuracy ................................................ 236 Load Conditions ........................................................ 234 ADC Initialization ............................................................... 193 Key Features............................................................. 193 ADC Module ADC1 Register Map ....................................................
dsPIC33FJ12MC201/202 Fundamental Modes Supported.................................. 49 MAC Instructions......................................................... 49 MCU Instructions ........................................................ 48 Move and Accumulator Instructions ............................ 49 Other Instructions........................................................ 49 Instruction Set Overview ................................................................... 214 Summary........................
dsPIC33FJ12MC201/202 IPC3 (Interrupt Priority Control 3) ............................... 93 IPC4 (Interrupt Priority Control 4) ............................... 94 IPC5 (Interrupt Priority Control 5) ............................... 95 IPC7 (Interrupt Priority Control 7) ............................... 96 NVMCON (Flash Memory Control) ............................. 59 NVMKEY (Nonvolatile Memory Key) .......................... 60 OCxCON (Output Compare x Control) .....................
dsPIC33FJ12MC201/202 NOTES: DS70265E-page 300 © 2007-2011 Microchip Technology Inc.
dsPIC33FJ12MC201/202 THE MICROCHIP WEB SITE CUSTOMER SUPPORT Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers.
dsPIC33FJ12MC201/202 READER RESPONSE It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document.
dsPIC33FJ12MC201/202 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. dsPIC 33 FJ 12 MC2 02 T E / SP - XXX Examples: a) Microchip Trademark Architecture dsPIC33FJ12MC202-E/SP: Motor Control dsPIC33, 12 KB program memory, 28-pin, Extended temperature, SPDIP package.
Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.