Datasheet

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X
DS70000657H-page 30 2011-2013 Microchip Technology Inc.
FIGURE 2-1: RECOMMENDED
MINIMUM CONNECTION
2.2.1 TANK CAPACITORS
On boards with power traces running longer than six
inches in length, it is suggested to use a tank capacitor
for integrated circuits including DSCs to supply a local
power source. The value of the tank capacitor should
be determined based on the trace resistance that con-
nects the power supply source to the device and the
maximum current drawn by the device in the applica-
tion. In other words, select the tank capacitor so that it
meets the acceptable voltage sag at the device. Typical
values range from 4.7 µF to 47 µF.
2.3 CPU Logic Filter Capacitor
Connection (V
CAP)
A low-ESR (< 1 Ohm) capacitor is required on the VCAP
pin, which is used to stabilize the voltage regulator
output voltage. The V
CAP pin must not be connected to
V
DD and must have a capacitor greater than 4.7 µF
(10 µF is recommended), 16V connected to ground. The
type can be ceramic or tantalum. See Section 30.0
“Electrical Characteristics” for additional information.
The placement of this capacitor should be close to the
V
CAP pin. It is recommended that the trace length not
exceeds one-quarter inch (6 mm). See Section 27.3
“On-Chip Voltage Regulator” for details.
2.4 Master Clear (MCLR) Pin
The MCLR pin provides two specific device functions:
Device Reset
Device Programming and Debugging.
During device programming and debugging, the
resistance and capacitance that can be added to the
pin must be considered. Device programmers and
debuggers drive the MCLR
pin. Consequently,
specific voltage levels (V
IH and VIL) and fast signal
transitions must not be adversely affected. Therefore,
specific values of R and C will need to be adjusted
based on the application and PCB requirements.
For example, as shown in Figure 2-2, it is recommended
that the capacitor, C, be isolated from the MCLR
pin
during programming and debugging operations.
Place the components as shown in Figure 2-2 within
one-quarter inch (6 mm) from the MCLR
pin.
FIGURE 2-2: EXAMPLE OF MCLR PIN
CONNECTIONS
dsPIC33E/PIC24E
VDD
VSS
VDD
VSS
VSS
VDD
AVDD
AVSS
VDD
VSS
0.1 µF
Ceramic
0.1 µF
Ceramic
0.1 µF
Ceramic
0.1 µF
Ceramic
C
R
V
DD
MCLR
0.1 µF
Ceramic
VCAP
L1
(1)
R1
10 µF
Tantalum
Note 1: As an option, instead of a hard-wired connection, an
inductor (L1) can be substituted between V
DD and
AV
DD to improve ADC noise rejection. The inductor
impedance should be less than 1 and the inductor
capacity greater than 10 mA.
Where:
f
F
CNV
2
--------------
=
f
1
2 LC
-----------------------
=
L
1
2fC
----------------------


2
=
(i.e., ADC conversion rate/2)
Note 1: R 10 k is recommended. A suggested
starting value is 10 k. Ensure that the MCLR
pin V
IH and VIL specifications are met.
2: R1 470 will limit any current flowing into
MCLR
from the external capacitor, C, in the
event of MCLR
pin breakdown, due to
Electrostatic Discharge (ESD) or Electrical
Overstress (EOS). Ensure that the MCLR
pin
V
IH and VIL specifications are met.
C
R1
(2)
R
(1)
VDD
MCLR
dsPIC33E/PIC24E
JP