Datasheet
Table Of Contents
- Features
- 1. Pin Configurations
- 2. Overview
- 3. About
- 4. CPU Core
- 5. Memories
- 6. Clock System
- 7. Power Management and Sleep Modes
- 8. System Control and Reset
- 9. Interrupts
- 10. I/O Ports
- 11. 8-bit Timer/Counter0 with PWM
- 11.1 Features
- 11.2 Overview
- 11.3 Clock Sources
- 11.4 Counter Unit
- 11.5 Output Compare Unit
- 11.6 Compare Match Output Unit
- 11.7 Modes of Operation
- 11.8 Timer/Counter Timing Diagrams
- 11.9 Register Description
- 11.9.1 TCCR0A – Timer/Counter Control Register A
- 11.9.2 TCCR0B – Timer/Counter Control Register B
- 11.9.3 TCNT0 – Timer/Counter Register
- 11.9.4 OCR0A – Output Compare Register A
- 11.9.5 OCR0B – Output Compare Register B
- 11.9.6 TIMSK0 – Timer/Counter 0 Interrupt Mask Register
- 11.9.7 TIFR0 – Timer/Counter 0 Interrupt Flag Register
- 12. 16-bit Timer/Counter1
- 12.1 Features
- 12.2 Overview
- 12.3 Timer/Counter Clock Sources
- 12.4 Counter Unit
- 12.5 Input Capture Unit
- 12.6 Output Compare Units
- 12.7 Compare Match Output Unit
- 12.8 Modes of Operation
- 12.9 Timer/Counter Timing Diagrams
- 12.10 Accessing 16-bit Registers
- 12.11 Register Description
- 12.11.1 TCCR1A – Timer/Counter1 Control Register A
- 12.11.2 TCCR1B – Timer/Counter1 Control Register B
- 12.11.3 TCCR1C – Timer/Counter1 Control Register C
- 12.11.4 TCNT1H and TCNT1L – Timer/Counter1
- 12.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A
- 12.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B
- 12.11.7 ICR1H and ICR1L – Input Capture Register 1
- 12.11.8 TIMSK1 – Timer/Counter Interrupt Mask Register 1
- 12.11.9 TIFR1 – Timer/Counter Interrupt Flag Register 1
- 13. Timer/Counter Prescaler
- 14. USI – Universal Serial Interface
- 15. Analog Comparator
- 16. Analog to Digital Converter
- 16.1 Features
- 16.2 Overview
- 16.3 Operation
- 16.4 Starting a Conversion
- 16.5 Prescaling and Conversion Timing
- 16.6 Changing Channel or Reference Selection
- 16.7 ADC Noise Canceler
- 16.8 Analog Input Circuitry
- 16.9 Noise Canceling Techniques
- 16.10 ADC Accuracy Definitions
- 16.11 ADC Conversion Result
- 16.12 Temperature Measurement
- 16.13 Register Description
- 17. debugWIRE On-chip Debug System
- 18. Self-Programming the Flash
- 18.1 Performing Page Erase by SPM
- 18.2 Filling the Temporary Buffer (Page Loading)
- 18.3 Performing a Page Write
- 18.4 Addressing the Flash During Self-Programming
- 18.5 EEPROM Write Prevents Writing to SPMCSR
- 18.6 Reading Lock, Fuse and Signature Data from Software
- 18.7 Preventing Flash Corruption
- 18.8 Programming Time for Flash when Using SPM
- 18.9 Register Description
- 19. Memory Programming
- 19.1 Program And Data Memory Lock Bits
- 19.2 Fuse Bytes
- 19.3 Device Signature Imprint Table
- 19.4 Page Size
- 19.5 Serial Programming
- 19.6 High-voltage Serial Programming
- 19.7 High-Voltage Serial Programming Algorithm
- 19.7.1 Enter High-voltage Serial Programming Mode
- 19.7.2 Considerations for Efficient Programming
- 19.7.3 Chip Erase
- 19.7.4 Programming the Flash
- 19.7.5 Programming the EEPROM
- 19.7.6 Reading the Flash
- 19.7.7 Reading the EEPROM
- 19.7.8 Programming and Reading the Fuse and Lock Bits
- 19.7.9 Reading the Signature Bytes and Calibration Byte
- 19.7.10 Power-off sequence
- 20. Electrical Characteristics
- 21. Typical Characteristics
- 21.1 Supply Current of I/O Modules
- 21.2 Active Supply Current
- 21.3 Idle Supply Current
- 21.4 Power-down Supply Current
- 21.5 Standby Supply Current
- 21.6 Pin Pull-up
- 21.7 Pin Driver Strength
- 21.8 Pin Threshold and Hysteresis
- 21.9 BOD Threshold and Analog Comparator Offset
- 21.10 Internal Oscillator Speed
- 21.11 Current Consumption of Peripheral Units
- 21.12 Current Consumption in Reset and Reset Pulsewidth
- 22. Register Summary
- 23. Instruction Set Summary
- 24. Ordering Information
- 25. Packaging Information
- 26. Errata
- 27. Datasheet Revision History
- Table of Contents

95
8006K–AVR–10/10
ATtiny24/44/84
Figure 12-5. Compare Match Output Unit, Schematic (non-PWM Mode)
The general I/O port function is overridden by the Output Compare (OC1x) from the Waveform
Generator if either of the COM1x1:0 bits are set. However, the OC1x pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x value is visi-
ble on the pin. The port override function is generally independent of the Waveform Generation
mode, but there are some exceptions. See Table 12-2 on page 109, Table 12-3 on page 109
and Table 12-4 on page 109 for details.
The design of the Output Compare pin logic allows initialization of the OC1x state before the out-
put is enabled. Note that some COM1x1:0 bit settings are reserved for certain modes of
operation. See “Register Description” on page 108
The COM1x1:0 bits have no effect on the Input Capture unit.
12.7.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COM1x1:0 = 0 tells the Waveform Generator that no action on the
OC1x Register is to be performed on the next compare match. For compare output actions in the
non-PWM modes refer to Table 12-2 on page 109. For fast PWM mode refer to Table 12-3 on
page 109, and for phase correct and phase and frequency correct PWM refer to Table 12-4 on
page 109.
A change of the COM1x1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the 1x
strobe bits.
PORT
DDR
DQ
DQ
OCnx
Pin
OCnx
DQ
Waveform
Generator
COMnx1
COMnx0
0
1
DATA B U
S
FOCnx
clk
I/O