Datasheet
Table Of Contents
- Features
- 1. Pin Configurations
- 2. Overview
- 3. About
- 4. CPU Core
- 5. Memories
- 6. Clock System
- 7. Power Management and Sleep Modes
- 8. System Control and Reset
- 9. Interrupts
- 10. I/O Ports
- 11. 8-bit Timer/Counter0 with PWM
- 11.1 Features
- 11.2 Overview
- 11.3 Clock Sources
- 11.4 Counter Unit
- 11.5 Output Compare Unit
- 11.6 Compare Match Output Unit
- 11.7 Modes of Operation
- 11.8 Timer/Counter Timing Diagrams
- 11.9 Register Description
- 11.9.1 TCCR0A – Timer/Counter Control Register A
- 11.9.2 TCCR0B – Timer/Counter Control Register B
- 11.9.3 TCNT0 – Timer/Counter Register
- 11.9.4 OCR0A – Output Compare Register A
- 11.9.5 OCR0B – Output Compare Register B
- 11.9.6 TIMSK0 – Timer/Counter 0 Interrupt Mask Register
- 11.9.7 TIFR0 – Timer/Counter 0 Interrupt Flag Register
- 12. 16-bit Timer/Counter1
- 12.1 Features
- 12.2 Overview
- 12.3 Timer/Counter Clock Sources
- 12.4 Counter Unit
- 12.5 Input Capture Unit
- 12.6 Output Compare Units
- 12.7 Compare Match Output Unit
- 12.8 Modes of Operation
- 12.9 Timer/Counter Timing Diagrams
- 12.10 Accessing 16-bit Registers
- 12.11 Register Description
- 12.11.1 TCCR1A – Timer/Counter1 Control Register A
- 12.11.2 TCCR1B – Timer/Counter1 Control Register B
- 12.11.3 TCCR1C – Timer/Counter1 Control Register C
- 12.11.4 TCNT1H and TCNT1L – Timer/Counter1
- 12.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A
- 12.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B
- 12.11.7 ICR1H and ICR1L – Input Capture Register 1
- 12.11.8 TIMSK1 – Timer/Counter Interrupt Mask Register 1
- 12.11.9 TIFR1 – Timer/Counter Interrupt Flag Register 1
- 13. Timer/Counter Prescaler
- 14. USI – Universal Serial Interface
- 15. Analog Comparator
- 16. Analog to Digital Converter
- 16.1 Features
- 16.2 Overview
- 16.3 Operation
- 16.4 Starting a Conversion
- 16.5 Prescaling and Conversion Timing
- 16.6 Changing Channel or Reference Selection
- 16.7 ADC Noise Canceler
- 16.8 Analog Input Circuitry
- 16.9 Noise Canceling Techniques
- 16.10 ADC Accuracy Definitions
- 16.11 ADC Conversion Result
- 16.12 Temperature Measurement
- 16.13 Register Description
- 17. debugWIRE On-chip Debug System
- 18. Self-Programming the Flash
- 18.1 Performing Page Erase by SPM
- 18.2 Filling the Temporary Buffer (Page Loading)
- 18.3 Performing a Page Write
- 18.4 Addressing the Flash During Self-Programming
- 18.5 EEPROM Write Prevents Writing to SPMCSR
- 18.6 Reading Lock, Fuse and Signature Data from Software
- 18.7 Preventing Flash Corruption
- 18.8 Programming Time for Flash when Using SPM
- 18.9 Register Description
- 19. Memory Programming
- 19.1 Program And Data Memory Lock Bits
- 19.2 Fuse Bytes
- 19.3 Device Signature Imprint Table
- 19.4 Page Size
- 19.5 Serial Programming
- 19.6 High-voltage Serial Programming
- 19.7 High-Voltage Serial Programming Algorithm
- 19.7.1 Enter High-voltage Serial Programming Mode
- 19.7.2 Considerations for Efficient Programming
- 19.7.3 Chip Erase
- 19.7.4 Programming the Flash
- 19.7.5 Programming the EEPROM
- 19.7.6 Reading the Flash
- 19.7.7 Reading the EEPROM
- 19.7.8 Programming and Reading the Fuse and Lock Bits
- 19.7.9 Reading the Signature Bytes and Calibration Byte
- 19.7.10 Power-off sequence
- 20. Electrical Characteristics
- 21. Typical Characteristics
- 21.1 Supply Current of I/O Modules
- 21.2 Active Supply Current
- 21.3 Idle Supply Current
- 21.4 Power-down Supply Current
- 21.5 Standby Supply Current
- 21.6 Pin Pull-up
- 21.7 Pin Driver Strength
- 21.8 Pin Threshold and Hysteresis
- 21.9 BOD Threshold and Analog Comparator Offset
- 21.10 Internal Oscillator Speed
- 21.11 Current Consumption of Peripheral Units
- 21.12 Current Consumption in Reset and Reset Pulsewidth
- 22. Register Summary
- 23. Instruction Set Summary
- 24. Ordering Information
- 25. Packaging Information
- 26. Errata
- 27. Datasheet Revision History
- Table of Contents

11
8006K–AVR–10/10
ATtiny24/44/84
Figure 4-3. The X-, Y-, and Z-registers
In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).
4.5 Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.
The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x60. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by two when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.
The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.
4.5.1 SPH and SPL — Stack Pointer Register
15 XH XL 0
X-register 707 0
R27 (0x1B) R26 (0x1A)
15 YH YL 0
Y-register 707 0
R29 (0x1D) R28 (0x1C)
15 ZH ZL 0
Z-register 7070
R31 (0x1F) R30 (0x1E)
Bit 151413121110 9 8
0x3E (0x5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL
76543210
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value
RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND
Initial Value
RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND