Datasheet
Table Of Contents
- Features
- 1. Pin Configurations
- 2. Overview
- 3. About
- 4. CPU Core
- 5. Memories
- 6. Clock System
- 7. Power Management and Sleep Modes
- 8. System Control and Reset
- 9. Interrupts
- 10. I/O Ports
- 11. 8-bit Timer/Counter0 with PWM
- 11.1 Features
- 11.2 Overview
- 11.3 Clock Sources
- 11.4 Counter Unit
- 11.5 Output Compare Unit
- 11.6 Compare Match Output Unit
- 11.7 Modes of Operation
- 11.8 Timer/Counter Timing Diagrams
- 11.9 Register Description
- 11.9.1 TCCR0A – Timer/Counter Control Register A
- 11.9.2 TCCR0B – Timer/Counter Control Register B
- 11.9.3 TCNT0 – Timer/Counter Register
- 11.9.4 OCR0A – Output Compare Register A
- 11.9.5 OCR0B – Output Compare Register B
- 11.9.6 TIMSK0 – Timer/Counter 0 Interrupt Mask Register
- 11.9.7 TIFR0 – Timer/Counter 0 Interrupt Flag Register
- 12. 16-bit Timer/Counter1
- 12.1 Features
- 12.2 Overview
- 12.3 Timer/Counter Clock Sources
- 12.4 Counter Unit
- 12.5 Input Capture Unit
- 12.6 Output Compare Units
- 12.7 Compare Match Output Unit
- 12.8 Modes of Operation
- 12.9 Timer/Counter Timing Diagrams
- 12.10 Accessing 16-bit Registers
- 12.11 Register Description
- 12.11.1 TCCR1A – Timer/Counter1 Control Register A
- 12.11.2 TCCR1B – Timer/Counter1 Control Register B
- 12.11.3 TCCR1C – Timer/Counter1 Control Register C
- 12.11.4 TCNT1H and TCNT1L – Timer/Counter1
- 12.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A
- 12.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B
- 12.11.7 ICR1H and ICR1L – Input Capture Register 1
- 12.11.8 TIMSK1 – Timer/Counter Interrupt Mask Register 1
- 12.11.9 TIFR1 – Timer/Counter Interrupt Flag Register 1
- 13. Timer/Counter Prescaler
- 14. USI – Universal Serial Interface
- 15. Analog Comparator
- 16. Analog to Digital Converter
- 16.1 Features
- 16.2 Overview
- 16.3 Operation
- 16.4 Starting a Conversion
- 16.5 Prescaling and Conversion Timing
- 16.6 Changing Channel or Reference Selection
- 16.7 ADC Noise Canceler
- 16.8 Analog Input Circuitry
- 16.9 Noise Canceling Techniques
- 16.10 ADC Accuracy Definitions
- 16.11 ADC Conversion Result
- 16.12 Temperature Measurement
- 16.13 Register Description
- 17. debugWIRE On-chip Debug System
- 18. Self-Programming the Flash
- 18.1 Performing Page Erase by SPM
- 18.2 Filling the Temporary Buffer (Page Loading)
- 18.3 Performing a Page Write
- 18.4 Addressing the Flash During Self-Programming
- 18.5 EEPROM Write Prevents Writing to SPMCSR
- 18.6 Reading Lock, Fuse and Signature Data from Software
- 18.7 Preventing Flash Corruption
- 18.8 Programming Time for Flash when Using SPM
- 18.9 Register Description
- 19. Memory Programming
- 19.1 Program And Data Memory Lock Bits
- 19.2 Fuse Bytes
- 19.3 Device Signature Imprint Table
- 19.4 Page Size
- 19.5 Serial Programming
- 19.6 High-voltage Serial Programming
- 19.7 High-Voltage Serial Programming Algorithm
- 19.7.1 Enter High-voltage Serial Programming Mode
- 19.7.2 Considerations for Efficient Programming
- 19.7.3 Chip Erase
- 19.7.4 Programming the Flash
- 19.7.5 Programming the EEPROM
- 19.7.6 Reading the Flash
- 19.7.7 Reading the EEPROM
- 19.7.8 Programming and Reading the Fuse and Lock Bits
- 19.7.9 Reading the Signature Bytes and Calibration Byte
- 19.7.10 Power-off sequence
- 20. Electrical Characteristics
- 21. Typical Characteristics
- 21.1 Supply Current of I/O Modules
- 21.2 Active Supply Current
- 21.3 Idle Supply Current
- 21.4 Power-down Supply Current
- 21.5 Standby Supply Current
- 21.6 Pin Pull-up
- 21.7 Pin Driver Strength
- 21.8 Pin Threshold and Hysteresis
- 21.9 BOD Threshold and Analog Comparator Offset
- 21.10 Internal Oscillator Speed
- 21.11 Current Consumption of Peripheral Units
- 21.12 Current Consumption in Reset and Reset Pulsewidth
- 22. Register Summary
- 23. Instruction Set Summary
- 24. Ordering Information
- 25. Packaging Information
- 26. Errata
- 27. Datasheet Revision History
- Table of Contents

100
8006K–AVR–10/10
ATtiny24/44/84
The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined
by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to
0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolu-
tion in bits can be calculated by using the following equation:
In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the value in ICR1
(WGM13:0 = 10), or the value in OCR1A (WGM13:0 = 11). The counter has then reached the
TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 12-8 on page
100. The figure shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP.
The TCNT1 value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The
OC1x interrupt flag will be set when a compare match occurs.
Figure 12-8. Phase Correct PWM Mode, Timing Diagram
The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM. When
either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 flag is set accord-
ingly at the same timer clock cycle as the OCR1x Registers are updated with the double buffer
value (at TOP). The interrupt flags can be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.
When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCR1x Registers are written. As the third period shown in Figure 12-8 on page 100 illustrates,
R
PCPWM
TOP 1+()log
2()log
-----------------------------------=
OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)
1 2 3 4
TOVn Interrupt Flag Set
(Interrupt on Bottom)
TCNTn
Period
OCnx
OCnx
(COMnx1:0 = 2)
(COMnx1:0 = 3)