Datasheet

614
SAM4S Series [DATASHEET]
11100F–ATARM–29-Jan-14
Figure 32-7. Receiver Clock Management
32.7.1.4 Serial Clock Ratio Considerations
The Transmitter and the Receiver can be programmed to operate with the clock signals provided on either the TK or RK
pins. This allows the SSC to support many slave-mode data transfers. In this case, the maximum clock speed allowed on
the RK pin is:
Master Clock divided by 2 if Receiver Frame Synchro is input
Master Clock divided by 3 if Receiver Frame Synchro is output
In addition, the maximum clock speed allowed on the TK pin is:
Master Clock divided by 6 if Transmit Frame Synchro is input
Master Clock divided by 2 if Transmit Frame Synchro is output
32.7.2 Transmitter Operations
A transmitted frame is triggered by a start event and can be followed by synchronization data before data transmission.
The start event is configured by setting the Transmit Clock Mode Register (SSC_TCMR). See “Start” on page 616.
The frame synchronization is configured setting the Transmit Frame Mode Register (SSC_TFMR). See “Frame Sync” on
page 618.
To transmit data, the transmitter uses a shift register clocked by the transmitter clock signal and the start mode selected
in the SSC_TCMR. Data is written by the application to the SSC_THR register then transferred to the shift register
according to the data format selected.
When both the SSC_THR and the transmit shift register are empty, the status flag TXEMPTY is set in SSC_SR. When
the Transmit Holding register is transferred in the Transmit shift register, the status flag TXRDY is set in SSC_SR and
additional data can be loaded in the holding register.
RK (pin)
Receiver
Clock
Divider
Clock
MUX
Tr i_ state
Controller
Clock
Output
CKO
Data Transfer
CKS
INV
MUX
Tr i_ state
Controller
Transmitter
Clock
CKI CKG