Datasheet
Table Of Contents
- Features
- Pin Configurations
- Overview
- Resources
- Data Retention
- About Code Examples
- Atmel AVR CPU Core
- AVR ATmega8 Memories
- System Clock and Clock Options
- Power Management and Sleep Modes
- System Control and Reset
- Interrupts
- I/O Ports
- Introduction
- Ports as General Digital I/O
- Alternate Port Functions
- Register Description for I/O Ports
- The Port B Data Register – PORTB
- The Port B Data Direction Register – DDRB
- The Port B Input Pins Address – PINB
- The Port C Data Register – PORTC
- The Port C Data Direction Register – DDRC
- The Port C Input Pins Address – PINC
- The Port D Data Register – PORTD
- The Port D Data Direction Register – DDRD
- The Port D Input Pins Address – PIND
- External Interrupts
- 8-bit Timer/Counter0
- Timer/Counter0 and Timer/Counter1 Prescalers
- 16-bit Timer/Counter1
- Overview
- Accessing 16-bit Registers
- Timer/Counter Clock Sources
- Counter Unit
- Input Capture Unit
- Output Compare Units
- Compare Match Output Unit
- Modes of Operation
- Timer/Counter Timing Diagrams
- 16-bit Timer/Counter Register Description
- Timer/Counter 1 Control Register A – TCCR1A
- Timer/Counter 1 Control Register B – TCCR1B
- Timer/Counter 1 – TCNT1H and TCNT1L
- Output Compare Register 1 A – OCR1AH and OCR1AL
- Output Compare Register 1 B – OCR1BH and OCR1BL
- Input Capture Register 1 – ICR1H and ICR1L
- Timer/Counter Interrupt Mask Register – TIMSK(1)
- Timer/Counter Interrupt Flag Register – TIFR(1)
- 8-bit Timer/Counter2 with PWM and Asynchronous Operation
- Serial Peripheral Interface – SPI
- USART
- Two-wire Serial Interface
- Analog Comparator
- Analog-to- Digital Converter
- Boot Loader Support – Read- While-Write Self- Programming
- Boot Loader Features
- Application and Boot Loader Flash Sections
- Read-While-Write and No Read- While-Write Flash Sections
- Boot Loader Lock Bits
- Entering the Boot Loader Program
- Addressing the Flash During Self- Programming
- Self-Programming the Flash
- Performing Page Erase by SPM
- Filling the Temporary Buffer (Page Loading)
- Performing a Page Write
- Using the SPM Interrupt
- Consideration While Updating BLS
- Prevent Reading the RWW Section During Self-Programming
- Setting the Boot Loader Lock Bits by SPM
- EEPROM Write Prevents Writing to SPMCR
- Reading the Fuse and Lock Bits from Software
- Preventing Flash Corruption
- Programming Time for Flash when using SPM
- Simple Assembly Code Example for a Boot Loader
- ATmega8 Boot Loader Parameters
- Memory Programming
- Program And Data Memory Lock Bits
- Fuse Bits
- Signature Bytes
- Calibration Byte
- Page Size
- Parallel Programming Parameters, Pin Mapping, and Commands
- Parallel Programming
- Enter Programming Mode
- Considerations for Efficient Programming
- Chip Erase
- Programming the Flash
- Programming the EEPROM
- Reading the Flash
- Reading the EEPROM
- Programming the Fuse Low Bits
- Programming the Fuse High Bits
- Programming the Lock Bits
- Reading the Fuse and Lock Bits
- Reading the Signature Bytes
- Reading the Calibration Byte
- Parallel Programming Characteristics
- Serial Downloading
- Serial Programming Pin Mapping
- Electrical Characteristics – TA = -40°C to 85°C
- Electrical Characteristics – TA = -40°C to 105°C
- ATmega8 Typical Characteristics – TA = -40°C to 85°C
- Active Supply Current
- Idle Supply Current
- Power-down Supply Current
- Power-save Supply Current
- Standby Supply Current
- Pin Pull-up
- Pin Driver Strength
- Pin Thresholds and Hysteresis
- Bod Thresholds and Analog Comparator Offset
- Internal Oscillator Speed
- Current Consumption of Peripheral Units
- Current Consumption in Reset and Reset Pulsewidth
- ATmega8 Typical Characteristics – TA = -40°C to 105°C
- Register Summary
- Instruction Set Summary
- Ordering Information
- Packaging Information
- Errata
- Datasheet Revision History
- Changes from Rev. 2486Z- 02/11 to Rev. 2486AA- 02/2013
- Changes from Rev. 2486Y- 10/10 to Rev. 2486Z- 02/11
- Changes from Rev. 2486X- 06/10 to Rev. 2486Y- 10/10
- Changes from Rev. 2486W- 02/10 to Rev. 2486X- 06/10
- Changes from Rev. 2486V- 05/09 to Rev. 2486W- 02/10
- Changes from Rev. 2486U- 08/08 to Rev. 2486V- 05/09
- Changes from Rev. 2486T- 05/08 to Rev. 2486U- 08/08
- Changes from Rev. 2486S- 08/07 to Rev. 2486T- 05/08
- Changes from Rev. 2486R- 07/07 to Rev. 2486S- 08/07
- Changes from Rev. 2486Q- 10/06 to Rev. 2486R- 07/07
- Changes from Rev. 2486P- 02/06 to Rev. 2486Q- 10/06
- Changes from Rev. 2486O-10/04 to Rev. 2486P- 02/06
- Changes from Rev. 2486N-09/04 to Rev. 2486O-10/04
- Changes from Rev. 2486M-12/03 to Rev. 2486N-09/04
- Changes from Rev. 2486L-10/03 to Rev. 2486M-12/03
- Changes from Rev. 2486K-08/03 to Rev. 2486L-10/03
- Changes from Rev. 2486J-02/03 to Rev. 2486K-08/03
- Changes from Rev. 2486I-12/02 to Rev. 2486J-02/03
- Changes from Rev. 2486H-09/02 to Rev. 2486I-12/02
- Changes from Rev. 2486G-09/02 to Rev. 2486H-09/02
- Changes from Rev. 2486F-07/02 to Rev. 2486G-09/02
- Changes from Rev. 2486E-06/02 to Rev. 2486F-07/02
- Changes from Rev. 2486D-03/02 to Rev. 2486E-06/02
- Changes from Rev. 2486C-03/02 to Rev. 2486D-03/02
- Changes from Rev. 2486B-12/01 to Rev. 2486C-03/02
- Table of Contents

55
2486AA–AVR–02/2013
ATmega8(L)
The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin
values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.
Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3
as low and redefining bits 0 and 1 as strong high drivers
Digital Input Enable
and Sleep Modes
As shown in Figure 22 on page 52, the digital input signal can be clamped to ground at the input
of the Schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Control-
ler in Power-down mode, Power-save mode, and Standby mode to avoid high power
consumption if some input signals are left floating, or have an analog signal level close to V
CC
/2.
SLEEP is overridden for port pins enabled as External Interrupt pins. If the External Interrupt
Request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by vari-
ous other alternate functions as described in “Alternate Port Functions” on page 56.
If a logic high level (“one”) is present on an Asynchronous External Interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt
is not enabled, the corresponding External Interrupt Flag will be set when resuming from the
above mentioned sleep modes, as the clamping in these sleep modes produces the requested
logic change.
Assembly Code Example
(1)
...
; Define pull-ups and set outputs high
; Define directions for port pins
ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)
ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)
out PORTB,r16
out DDRB,r17
; Insert nop for synchronization
nop
; Read port pins
in r16,PINB
...
C Code Example
(1)
unsigned char i;
...
/* Define pull-ups and set outputs high */
/* Define directions for port pins */
PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);
DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);
/* Insert nop for synchronization*/
_NOP();
/* Read port pins */
i = PINB;
...