Datasheet
Table Of Contents
- Features
- Pin Configurations
- Overview
- Resources
- Data Retention
- About Code Examples
- Atmel AVR CPU Core
- AVR ATmega8 Memories
- System Clock and Clock Options
- Power Management and Sleep Modes
- System Control and Reset
- Interrupts
- I/O Ports
- Introduction
- Ports as General Digital I/O
- Alternate Port Functions
- Register Description for I/O Ports
- The Port B Data Register – PORTB
- The Port B Data Direction Register – DDRB
- The Port B Input Pins Address – PINB
- The Port C Data Register – PORTC
- The Port C Data Direction Register – DDRC
- The Port C Input Pins Address – PINC
- The Port D Data Register – PORTD
- The Port D Data Direction Register – DDRD
- The Port D Input Pins Address – PIND
- External Interrupts
- 8-bit Timer/Counter0
- Timer/Counter0 and Timer/Counter1 Prescalers
- 16-bit Timer/Counter1
- Overview
- Accessing 16-bit Registers
- Timer/Counter Clock Sources
- Counter Unit
- Input Capture Unit
- Output Compare Units
- Compare Match Output Unit
- Modes of Operation
- Timer/Counter Timing Diagrams
- 16-bit Timer/Counter Register Description
- Timer/Counter 1 Control Register A – TCCR1A
- Timer/Counter 1 Control Register B – TCCR1B
- Timer/Counter 1 – TCNT1H and TCNT1L
- Output Compare Register 1 A – OCR1AH and OCR1AL
- Output Compare Register 1 B – OCR1BH and OCR1BL
- Input Capture Register 1 – ICR1H and ICR1L
- Timer/Counter Interrupt Mask Register – TIMSK(1)
- Timer/Counter Interrupt Flag Register – TIFR(1)
- 8-bit Timer/Counter2 with PWM and Asynchronous Operation
- Serial Peripheral Interface – SPI
- USART
- Two-wire Serial Interface
- Analog Comparator
- Analog-to- Digital Converter
- Boot Loader Support – Read- While-Write Self- Programming
- Boot Loader Features
- Application and Boot Loader Flash Sections
- Read-While-Write and No Read- While-Write Flash Sections
- Boot Loader Lock Bits
- Entering the Boot Loader Program
- Addressing the Flash During Self- Programming
- Self-Programming the Flash
- Performing Page Erase by SPM
- Filling the Temporary Buffer (Page Loading)
- Performing a Page Write
- Using the SPM Interrupt
- Consideration While Updating BLS
- Prevent Reading the RWW Section During Self-Programming
- Setting the Boot Loader Lock Bits by SPM
- EEPROM Write Prevents Writing to SPMCR
- Reading the Fuse and Lock Bits from Software
- Preventing Flash Corruption
- Programming Time for Flash when using SPM
- Simple Assembly Code Example for a Boot Loader
- ATmega8 Boot Loader Parameters
- Memory Programming
- Program And Data Memory Lock Bits
- Fuse Bits
- Signature Bytes
- Calibration Byte
- Page Size
- Parallel Programming Parameters, Pin Mapping, and Commands
- Parallel Programming
- Enter Programming Mode
- Considerations for Efficient Programming
- Chip Erase
- Programming the Flash
- Programming the EEPROM
- Reading the Flash
- Reading the EEPROM
- Programming the Fuse Low Bits
- Programming the Fuse High Bits
- Programming the Lock Bits
- Reading the Fuse and Lock Bits
- Reading the Signature Bytes
- Reading the Calibration Byte
- Parallel Programming Characteristics
- Serial Downloading
- Serial Programming Pin Mapping
- Electrical Characteristics – TA = -40°C to 85°C
- Electrical Characteristics – TA = -40°C to 105°C
- ATmega8 Typical Characteristics – TA = -40°C to 85°C
- Active Supply Current
- Idle Supply Current
- Power-down Supply Current
- Power-save Supply Current
- Standby Supply Current
- Pin Pull-up
- Pin Driver Strength
- Pin Thresholds and Hysteresis
- Bod Thresholds and Analog Comparator Offset
- Internal Oscillator Speed
- Current Consumption of Peripheral Units
- Current Consumption in Reset and Reset Pulsewidth
- ATmega8 Typical Characteristics – TA = -40°C to 105°C
- Register Summary
- Instruction Set Summary
- Ordering Information
- Packaging Information
- Errata
- Datasheet Revision History
- Changes from Rev. 2486Z- 02/11 to Rev. 2486AA- 02/2013
- Changes from Rev. 2486Y- 10/10 to Rev. 2486Z- 02/11
- Changes from Rev. 2486X- 06/10 to Rev. 2486Y- 10/10
- Changes from Rev. 2486W- 02/10 to Rev. 2486X- 06/10
- Changes from Rev. 2486V- 05/09 to Rev. 2486W- 02/10
- Changes from Rev. 2486U- 08/08 to Rev. 2486V- 05/09
- Changes from Rev. 2486T- 05/08 to Rev. 2486U- 08/08
- Changes from Rev. 2486S- 08/07 to Rev. 2486T- 05/08
- Changes from Rev. 2486R- 07/07 to Rev. 2486S- 08/07
- Changes from Rev. 2486Q- 10/06 to Rev. 2486R- 07/07
- Changes from Rev. 2486P- 02/06 to Rev. 2486Q- 10/06
- Changes from Rev. 2486O-10/04 to Rev. 2486P- 02/06
- Changes from Rev. 2486N-09/04 to Rev. 2486O-10/04
- Changes from Rev. 2486M-12/03 to Rev. 2486N-09/04
- Changes from Rev. 2486L-10/03 to Rev. 2486M-12/03
- Changes from Rev. 2486K-08/03 to Rev. 2486L-10/03
- Changes from Rev. 2486J-02/03 to Rev. 2486K-08/03
- Changes from Rev. 2486I-12/02 to Rev. 2486J-02/03
- Changes from Rev. 2486H-09/02 to Rev. 2486I-12/02
- Changes from Rev. 2486G-09/02 to Rev. 2486H-09/02
- Changes from Rev. 2486F-07/02 to Rev. 2486G-09/02
- Changes from Rev. 2486E-06/02 to Rev. 2486F-07/02
- Changes from Rev. 2486D-03/02 to Rev. 2486E-06/02
- Changes from Rev. 2486C-03/02 to Rev. 2486D-03/02
- Changes from Rev. 2486B-12/01 to Rev. 2486C-03/02
- Table of Contents

206
2486AA–AVR–02/2013
ATmega8(L)
Note: 1. “1” means unprogrammed, “0” means programmed
Store Program
Memory Control
Register – SPMCR
The Store Program memory Control Register contains the control bits needed to control the Boot
Loader operations.
• Bit 7 – SPMIE: SPM Interrupt Enable
When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM
ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SPMEN
bit in the SPMCR Register is cleared.
• Bit 6 – RWWSB: Read-While-Write Section Busy
When a Self-Programming (page erase or page write) operation to the RWW section is initiated,
the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the RWW section can-
not be accessed. The RWWSB bit will be cleared if the RWWSRE bit is written to one after a
Self-Programming operation is completed. Alternatively the RWWSB bit will automatically be
cleared if a page load operation is initiated.
• Bit 5 – Res: Reserved Bit
This bit is a reserved bit in the ATmega8 and always read as zero.
• Bit 4 – RWWSRE: Read-While-Write Section Read Enable
When programming (page erase or page write) to the RWW section, the RWW section is
blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW section, the
user software must wait until the programming is completed (SPMEN will be cleared). Then, if
the RWWSRE bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while
the Flash is busy with a page erase or a page write (SPMEN is set). If the RWWSRE bit is writ-
ten while the Flash is being loaded, the Flash load operation will abort and the data loaded will
be lost (The page buffer will be cleared when the Read-While-Write section is re-enabled).
• Bit 3 – BLBSET: Boot Lock Bit Set
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles sets Boot Lock Bits, according to the data in R0. The data in R1 and the address in the Z-
pointer are ignored. The BLBSET bit will automatically be cleared upon completion of the lock bit
set, or if no SPM instruction is executed within four clock cycles.
An LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCR Regis-
ter, will read either the Lock Bits or the Fuse Bits (depending on Z0 in the Z-pointer) into the
destination register. See “Reading the Fuse and Lock Bits from Software” on page 210 for
details.
Table 80. Boot Reset Fuse
(1)
BOOTRST Reset Address
1 Reset Vector = Application Reset (address 0x0000)
0 Reset Vector = Boot Loader Reset (see Table 82 on page 213)
Bit 765 4 3210
SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN SPMCR
Read/Write R/W R R R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0