Datasheet
Table Of Contents
- Features
- Pin Configurations
- Overview
- Resources
- Data Retention
- About Code Examples
- Atmel AVR CPU Core
- AVR ATmega8 Memories
- System Clock and Clock Options
- Power Management and Sleep Modes
- System Control and Reset
- Interrupts
- I/O Ports
- Introduction
- Ports as General Digital I/O
- Alternate Port Functions
- Register Description for I/O Ports
- The Port B Data Register – PORTB
- The Port B Data Direction Register – DDRB
- The Port B Input Pins Address – PINB
- The Port C Data Register – PORTC
- The Port C Data Direction Register – DDRC
- The Port C Input Pins Address – PINC
- The Port D Data Register – PORTD
- The Port D Data Direction Register – DDRD
- The Port D Input Pins Address – PIND
- External Interrupts
- 8-bit Timer/Counter0
- Timer/Counter0 and Timer/Counter1 Prescalers
- 16-bit Timer/Counter1
- Overview
- Accessing 16-bit Registers
- Timer/Counter Clock Sources
- Counter Unit
- Input Capture Unit
- Output Compare Units
- Compare Match Output Unit
- Modes of Operation
- Timer/Counter Timing Diagrams
- 16-bit Timer/Counter Register Description
- Timer/Counter 1 Control Register A – TCCR1A
- Timer/Counter 1 Control Register B – TCCR1B
- Timer/Counter 1 – TCNT1H and TCNT1L
- Output Compare Register 1 A – OCR1AH and OCR1AL
- Output Compare Register 1 B – OCR1BH and OCR1BL
- Input Capture Register 1 – ICR1H and ICR1L
- Timer/Counter Interrupt Mask Register – TIMSK(1)
- Timer/Counter Interrupt Flag Register – TIFR(1)
- 8-bit Timer/Counter2 with PWM and Asynchronous Operation
- Serial Peripheral Interface – SPI
- USART
- Two-wire Serial Interface
- Analog Comparator
- Analog-to- Digital Converter
- Boot Loader Support – Read- While-Write Self- Programming
- Boot Loader Features
- Application and Boot Loader Flash Sections
- Read-While-Write and No Read- While-Write Flash Sections
- Boot Loader Lock Bits
- Entering the Boot Loader Program
- Addressing the Flash During Self- Programming
- Self-Programming the Flash
- Performing Page Erase by SPM
- Filling the Temporary Buffer (Page Loading)
- Performing a Page Write
- Using the SPM Interrupt
- Consideration While Updating BLS
- Prevent Reading the RWW Section During Self-Programming
- Setting the Boot Loader Lock Bits by SPM
- EEPROM Write Prevents Writing to SPMCR
- Reading the Fuse and Lock Bits from Software
- Preventing Flash Corruption
- Programming Time for Flash when using SPM
- Simple Assembly Code Example for a Boot Loader
- ATmega8 Boot Loader Parameters
- Memory Programming
- Program And Data Memory Lock Bits
- Fuse Bits
- Signature Bytes
- Calibration Byte
- Page Size
- Parallel Programming Parameters, Pin Mapping, and Commands
- Parallel Programming
- Enter Programming Mode
- Considerations for Efficient Programming
- Chip Erase
- Programming the Flash
- Programming the EEPROM
- Reading the Flash
- Reading the EEPROM
- Programming the Fuse Low Bits
- Programming the Fuse High Bits
- Programming the Lock Bits
- Reading the Fuse and Lock Bits
- Reading the Signature Bytes
- Reading the Calibration Byte
- Parallel Programming Characteristics
- Serial Downloading
- Serial Programming Pin Mapping
- Electrical Characteristics – TA = -40°C to 85°C
- Electrical Characteristics – TA = -40°C to 105°C
- ATmega8 Typical Characteristics – TA = -40°C to 85°C
- Active Supply Current
- Idle Supply Current
- Power-down Supply Current
- Power-save Supply Current
- Standby Supply Current
- Pin Pull-up
- Pin Driver Strength
- Pin Thresholds and Hysteresis
- Bod Thresholds and Analog Comparator Offset
- Internal Oscillator Speed
- Current Consumption of Peripheral Units
- Current Consumption in Reset and Reset Pulsewidth
- ATmega8 Typical Characteristics – TA = -40°C to 105°C
- Register Summary
- Instruction Set Summary
- Ordering Information
- Packaging Information
- Errata
- Datasheet Revision History
- Changes from Rev. 2486Z- 02/11 to Rev. 2486AA- 02/2013
- Changes from Rev. 2486Y- 10/10 to Rev. 2486Z- 02/11
- Changes from Rev. 2486X- 06/10 to Rev. 2486Y- 10/10
- Changes from Rev. 2486W- 02/10 to Rev. 2486X- 06/10
- Changes from Rev. 2486V- 05/09 to Rev. 2486W- 02/10
- Changes from Rev. 2486U- 08/08 to Rev. 2486V- 05/09
- Changes from Rev. 2486T- 05/08 to Rev. 2486U- 08/08
- Changes from Rev. 2486S- 08/07 to Rev. 2486T- 05/08
- Changes from Rev. 2486R- 07/07 to Rev. 2486S- 08/07
- Changes from Rev. 2486Q- 10/06 to Rev. 2486R- 07/07
- Changes from Rev. 2486P- 02/06 to Rev. 2486Q- 10/06
- Changes from Rev. 2486O-10/04 to Rev. 2486P- 02/06
- Changes from Rev. 2486N-09/04 to Rev. 2486O-10/04
- Changes from Rev. 2486M-12/03 to Rev. 2486N-09/04
- Changes from Rev. 2486L-10/03 to Rev. 2486M-12/03
- Changes from Rev. 2486K-08/03 to Rev. 2486L-10/03
- Changes from Rev. 2486J-02/03 to Rev. 2486K-08/03
- Changes from Rev. 2486I-12/02 to Rev. 2486J-02/03
- Changes from Rev. 2486H-09/02 to Rev. 2486I-12/02
- Changes from Rev. 2486G-09/02 to Rev. 2486H-09/02
- Changes from Rev. 2486F-07/02 to Rev. 2486G-09/02
- Changes from Rev. 2486E-06/02 to Rev. 2486F-07/02
- Changes from Rev. 2486D-03/02 to Rev. 2486E-06/02
- Changes from Rev. 2486C-03/02 to Rev. 2486D-03/02
- Changes from Rev. 2486B-12/01 to Rev. 2486C-03/02
- Table of Contents

20
2486AA–AVR–02/2013
ATmega8(L)
The EEPROM Address
Register – EEARH and
EEARL
• Bits 15..9 – Res: Reserved Bits
These bits are reserved bits in the ATmega8 and will always read as zero.
• Bits 8..0 – EEAR8..0: EEPROM Address
The EEPROM Address Registers – EEARH and EEARL – specify the EEPROM address in the
512bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 511.
The initial value of EEAR is undefined. A proper value must be written before the EEPROM may
be accessed.
The EEPROM Data
Register – EEDR
• Bits 7..0 – EEDR7..0: EEPROM Data
For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.
The EEPROM Control
Register – EECR
• Bits 7..4 – Res: Reserved Bits
These bits are reserved bits in the Atmel
®
AVR
®
ATmega8 and will always read as zero.
• Bit 3 – EERIE: EEPROM Ready Interrupt Enable
Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEWE is cleared.
• Bit 2 – EEMWE: EEPROM Master Write Enable
The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written.
When EEMWE is set, setting EEWE within four clock cycles will write data to the EEPROM at
the selected address If EEMWE is zero, setting EEWE will have no effect. When EEMWE has
been written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the “Bit 1 – EEWE: EEPROM Write Enable” for an EEPROM write procedure.
• Bit 1 – EEWE: EEPROM Write Enable
The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEWE bit must be written to one to write the value into the
EEPROM. The EEMWE bit must be written to one before a logical one is written to EEWE, oth-
Bit 151413121110 9 8
–––––––EEAR8EEARH
EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL
76543210
Read/WriteRRRRRRRR/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value0000000X
XXXXXXXX
Bit 76543210
MSB LSB EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value00000000
Bit 76543210
– – – – EERIE EEMWE EEWE EERE EECR
Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 X 0