Datasheet

Figure 11-4. The Parallel Instruction Fetches and Instruction Executions
clk
1st Instruction Fetch
1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch
T1 T2 T3 T4
CPU
The following figure shows the internal timing concept for the register file. In a single clock cycle, an ALU
operation using two register operands is executed and the result is stored back to the destination register.
Figure 11-5. Single Cycle ALU Operation
Total Execution Time
Register Operands Fetch
ALU Operation Execute
Result Write Back
T1 T2 T3 T4
clk
CPU
11.7 Reset and Interrupt Handling
The AVR provides several different interrupt sources. These interrupts and the separate Reset vector
each have a separate program vector in the program memory space. All interrupts are assigned
individual enable bits, which must be written logic one together with the global interrupt enable bit in the
Status register in order to enable the interrupt. Depending on the program counter value, interrupts may
be automatically disabled when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves
software security.
The lowest addresses in the program memory space are by default defined as the Reset and interrupt
vectors. They have determined priority levels: The lower the address the higher is the priority level.
RESET has the highest priority, and next is INT0 – the External Interrupt Request 0. The interrupt vectors
can be moved to the start of the boot Flash section by setting the IVSEL bit in the MCU Control Register
(MCUCR). The Reset vector can be moved to the start of the boot Flash section by programming the
BOOTRST Fuse.
When an interrupt occurs, the global interrupt enable I-bit is cleared and all interrupts are disabled. The
user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then
interrupt the current interrupt routine. The I-bit is automatically set when a return from interrupt instruction
– RETI – is executed.
There are basically two types of interrupts:
The first type is triggered by an event that sets the interrupt flag. For these interrupts, the program
counter is vectored to the actual interrupt vector in order to execute the interrupt handling routine, and
ATmega48PA/88PA/168PA
AVR CPU Core
© 2018 Microchip Technology Inc.
Datasheet Complete
DS40002011A-page 36