Datasheet

ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14
34
7.2 Idle Mode
When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter idle mode, stopping the CPU but
allowing the SPI, USART, analog comparator, ADC, 2-wire serial interface, Timer/Counters, watchdog, and the interrupt
system to continue operating. This sleep mode basically halts clk
CPU
and clk
FLASH
, while allowing the other clocks to run.
Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the timer overflow and
USART transmit complete interrupts. If wake-up from the analog comparator interrupt is not required, the analog comparator
can be powered down by setting the ACD bit in the analog comparator control and status register – ACSR. This will reduce
power consumption in idle mode. If the ADC is enabled, a conversion starts automatically when this mode is entered.
7.3 ADC Noise Reduction Mode
When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC noise reduction mode, stopping
the CPU but allowing the ADC, the external interrupts, the 2-wire serial interface address watch, Timer/Counter2, and the
watchdog to continue operating (if enabled). This sleep mode basically halts clk
I/O
, clk
CPU
, and clk
FLASH
, while allowing the
other clocks to run.
This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is enabled, a
conversion starts automatically when this mode is entered. Apart from the ADC conversion complete interrupt, only an
external reset, a watchdog system reset, a watchdog interrupt, a brown-out reset, a 2-wire serial interface address match, a
Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an external level interrupt on INT0 or INT1 or a pin change
interrupt can wake up the MCU from ADC noise reduction mode.
7.4 Power-down Mode
When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter power-down mode. In this mode, the
external oscillator is stopped, while the external interrupts, the 2-wire serial interface address watch, and the watchdog
continue operating (if enabled). Only an external reset, a watchdog system reset, a watchdog interrupt, a brown-out reset, a
2-wire serial interface address match, an external level interrupt on INT0 or INT1, or a pin change interrupt can wake up the
MCU. This sleep mode basically halts all generated clocks, allowing operation of asynchronous modules only.
Note that if a level triggered interrupt is used for wake-up from power-down mode, the changed level must be held for some
time to wake up the MCU. Refer to Section 11. “External Interrupts” on page 73 for details.
When waking up from power-down mode, there is a delay from the wake-up condition occurs until the wake-up becomes
effective. This allows the clock to restart and become stable after having been stopped. The wake-up period is defined by the
same CKSEL fuses that define the reset time-out period, as described in Section 6.2 “Clock Sources” on page 24.
7.5 Power-save Mode
When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter power-save mode. This mode is
identical to power-down, with one exception:
If Timer/Counter2 is enabled, it will keep running during sleep. The device can wake up from either timer overflow or output
compare event from Timer/Counter2 if the corresponding Timer/Counter2 interrupt enable bits are set in TIMSK2, and the
global interrupt enable bit in SREG is set.
If Timer/Counter2 is not running, power-down mode is recommended instead of power-save mode.
The Timer/Counter2 can be clocked both synchronously and asynchronously in power-save mode. If Timer/Counter2 is not
using the asynchronous clock, the Timer/Counter oscillator is stopped during sleep. If Timer/Counter2 is not using the
synchronous clock, the clock source is stopped during sleep. Note that even if the synchronous clock is running in
power-save, this clock is only available for Timer/Counter2.