Datasheet
ATmega48/88/168 Automotive [DATASHEET]
7530K–AVR–07/14
14
There are basically two types of interrupts. The first type is triggered by an event that sets the interrupt flag. For these
interrupts, the program counter is vectored to the actual interrupt vector in order to execute the interrupt handling routine,
and hardware clears the corresponding interrupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit
position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the interrupt
flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more
interrupt conditions occur while the global interrupt enable bit is cleared, the corresponding interrupt flag(s) will be set and
remembered until the global interrupt enable bit is set, and will then be executed by order of priority.
The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily
have interrupt flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered.
When the AVR
®
exits from an interrupt, it will always return to the main program and execute one more instruction before
any pending interrupt is served.
Note that the status register is not automatically stored when entering an interrupt routine, nor restored when returning from
an interrupt routine. This must be handled by software.
When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed
after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can
be used to avoid interrupts during the timed EEPROM write sequence.
When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pending
interrupts, as shown in this example.
4.8.1 Interrupt Response Time
The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. After four clock cycles the
program vector address for the actual interrupt handling routine is executed. During this four clock cycle period, the program
counter is pushed onto the stack. The vector is normally a jump to the interrupt routine, and this jump takes three clock
cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is
served. If an interrupt occurs when the MCU is in sleep mode, the interrupt execution response time is increased by four
clock cycles. This increase comes in addition to the start-up time from the selected sleep mode.
A return from an interrupt handling routine takes four clock cycles. During these four clock cycles, the program counter (two
bytes) is popped back from the stack, the stack pointer is incremented by two, and the I-bit in SREG is set.
Assembly Code Example
in r16, SREG ; store SREG value
cli ; disable interrupts during timed sequence
sbi EECR, EEMPE ; start EEPROM write
sbi EECR, EEPE
out SREG, r16 ; restore SREG value (I-bit)
C Code Example
char cSREG;
cSREG = SREG; /* store SREG value */
/* disable interrupts during timed sequence */
_CLI();
EECR |= (1<<EEMPE); /* start EEPROM write */
EECR |= (1<<EEPE);
SREG = cSREG; /* restore SREG value (I-bit) */
Assembly Code Example
sei ; set Global Interrupt Enable
sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending interrupt(s)
C Code Example
__enable_interrupt(); /* set Global Interrupt Enable */
__sleep(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */