Datasheet
Table Of Contents
- Features
- 1. Pin Configurations
- 2. Overview
- 3. Resources
- 4. Data Retention
- 5. About Code Examples
- 6. Capacitive touch sensing
- 7. AVR CPU Core
- 8. AVR Memories
- 9. System Clock and Clock Options
- 10. Power Management and Sleep Modes
- 11. System Control and Reset
- 12. Interrupts
- 13. External Interrupts
- 13.1 Pin Change Interrupt Timing
- 13.2 Register Description
- 13.2.1 EICRA – External Interrupt Control Register A
- 13.2.2 EIMSK – External Interrupt Mask Register
- 13.2.3 EIFR – External Interrupt Flag Registe
- 13.2.4 PCMSK3 – Pin Change Mask Register 3(1)
- 13.2.5 PCMSK2 – Pin Change Mask Register 2(1)
- 13.2.6 PCMSK1 – Pin Change Mask Register 1
- 13.2.7 PCMSK0 – Pin Change Mask Register 0
- 14. I/O-Ports
- 14.1 Overview
- 14.2 Ports as General Digital I/O
- 14.3 Alternate Port Functions
- 14.4 Register Description
- 14.4.1 MCUCR – MCU Control Register
- 14.4.2 PORTA – Port A Data Register
- 14.4.3 DDRA – Port A Data Direction Register
- 14.4.4 PINA – Port A Input Pins Address
- 14.4.5 PORTB – Port B Data Register
- 14.4.6 DDRB – Port B Data Direction Register
- 14.4.7 PINB – Port B Input Pins Address
- 14.4.8 PORTC – Port C Data Register
- 14.4.9 DDRC – Port C Data Direction Register
- 14.4.10 PINC – Port C Input Pins Address
- 14.4.11 PORTD – Port D Data Register
- 14.4.12 DDRD – Port D Data Direction Register
- 14.4.13 PIND – Port D Input Pins Address
- 14.4.14 PORTE – Port E Data Register
- 14.4.15 DDRE – Port E Data Direction Register
- 14.4.16 PINE – Port E Input Pins Address
- 14.4.17 PORTF – Port F Data Register
- 14.4.18 DDRF – Port F Data Direction Register
- 14.4.19 PINF – Port F Input Pins Address
- 14.4.20 PORTG – Port G Data Register
- 14.4.21 DDRG – Port G Data Direction Register
- 14.4.22 PING – Port G Input Pins Address
- 14.4.23 PORTH – Port H Data Register(1)
- 14.4.24 DDRH – Port H Data Direction Register(1)
- 14.4.25 PINH – Port H Input Pins Address(1)
- 14.4.26 PORTJ – Port J Data Register(1)
- 14.4.27 DDRJ – Port J Data Direction Register(1)
- 14.4.28 PINJ – Port J Input Pins Address(1)
- 15. 8-bit Timer/Counter0 with PWM
- 16. Timer/Counter0 and Timer/Counter1 Prescalers
- 17. 16-bit Timer/Counter1
- 17.1 Features
- 17.2 Overview
- 17.3 Accessing 16-bit Registers
- 17.4 Timer/Counter Clock Sources
- 17.5 Counter Unit
- 17.6 Input Capture Unit
- 17.7 Output Compare Units
- 17.8 Compare Match Output Unit
- 17.9 Modes of Operation
- 17.10 Timer/Counter Timing Diagrams
- 17.11 Register Description
- 17.11.1 TCCR1A – Timer/Counter1 Control Register A
- 17.11.2 TCCR1B – Timer/Counter1 Control Register B
- 17.11.3 TCCR1C – Timer/Counter1 Control Register C
- 17.11.4 TCNT1H and TCNT1L – Timer/Counter1
- 17.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A
- 17.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B
- 17.11.7 ICR1H and ICR1L – Input Capture Register 1
- 17.11.8 TIMSK1 – Timer/Counter1 Interrupt Mask Register
- 17.11.9 TIFR1 – Timer/Counter1 Interrupt Flag Register
- 18. 8-bit Timer/Counter2 with PWM and Asynchronous Operation
- 18.1 Features
- 18.2 Overview
- 18.3 Timer/Counter Clock Sources
- 18.4 Counter Unit
- 18.5 Output Compare Unit
- 18.6 Compare Match Output Unit
- 18.7 Modes of Operation
- 18.8 Timer/Counter Timing Diagrams
- 18.9 Asynchronous Operation of Timer/Counter2
- 18.10 Timer/Counter Prescaler
- 18.11 Register Description
- 18.11.1 TCCR2A – Timer/Counter Control Register A
- 18.11.2 TCNT2 – Timer/Counter Register
- 18.11.3 OCR2A – Output Compare Register A
- 18.11.4 ASSR – Asynchronous Status Register
- 18.11.5 TIMSK2 – Timer/Counter2 Interrupt Mask Register
- 18.11.6 TIFR2 – Timer/Counter2 Interrupt Flag Register
- 18.11.7 GTCCR – General Timer/Counter Control Register
- 19. SPI – Serial Peripheral Interface
- 20. USART0
- 20.1 Features
- 20.2 Overview
- 20.3 Clock Generation
- 20.4 Frame Formats
- 20.5 USART Initialization
- 20.6 Data Transmission – The USART Transmitter
- 20.7 Data Reception – The USART Receiver
- 20.8 Asynchronous Data Reception
- 20.9 Multi-processor Communication Mode
- 20.10 Examples of Baud Rate Setting
- 20.11 Register Description
- 21. USI – Universal Serial Interface
- 22. Analog Comparator
- 23. Analog to Digital Converter
- 24. JTAG Interface and On-chip Debug System
- 25. IEEE 1149.1 (JTAG) Boundary-scan
- 26. Boot Loader Support – Read-While-Write Self-Programming
- 26.1 Features
- 26.2 Overview
- 26.3 Application and Boot Loader Flash Sections
- 26.4 Read-While-Write and No Read-While-Write Flash Sections
- 26.5 Boot Loader Lock Bits
- 26.6 Entering the Boot Loader Program
- 26.7 Addressing the Flash During Self-Programming
- 26.8 Self-Programming the Flash
- 26.8.1 Performing Page Erase by SPM
- 26.8.2 Filling the Temporary Buffer (Page Loading)
- 26.8.3 Performing a Page Write
- 26.8.4 Using the SPM Interrupt
- 26.8.5 Consideration While Updating BLS
- 26.8.6 Prevent Reading the RWW Section During Self-Programming
- 26.8.7 Setting the Boot Loader Lock Bits by SPM
- 26.8.8 EEPROM Write Prevents Writing to SPMCSR
- 26.8.9 Reading the Fuse and Lock Bits from Software
- 26.8.10 Preventing Flash Corruption
- 26.8.11 Programming Time for Flash when Using SPM
- 26.8.12 Simple Assembly Code Example for a Boot Loader
- 26.8.13 Atmel ATmega325/3250/645/6450 Boot Loader Parameters
- 26.9 Register Description
- 27. Memory Programming
- 27.1 Program And Data Memory Lock Bits
- 27.2 Fuse Bits
- 27.3 Signature Bytes
- 27.4 Calibration Byte
- 27.5 Parallel Programming Parameters, Pin Mapping, and Commands
- 27.6 Parallel Programming
- 27.6.1 Enter Programming Mode
- 27.6.2 Considerations for Efficient Programming
- 27.6.3 Chip Erase
- 27.6.4 Programming the Flash
- 27.6.5 Programming the EEPROM
- 27.6.6 Reading the Flash
- 27.6.7 Reading the EEPROM
- 27.6.8 Programming the Fuse Low Bits
- 27.6.9 Programming the Fuse High Bits
- 27.6.10 Programming the Extended Fuse Bits
- 27.6.11 Programming the Lock Bits
- 27.6.12 Reading the Fuse and Lock Bits
- 27.6.13 Reading the Signature Bytes
- 27.6.14 Reading the Calibration Byte
- 27.6.15 Parallel Programming Characteristics
- 27.7 Serial Downloading
- 27.8 Programming via the JTAG Interface
- 27.8.1 Programming Specific JTAG Instructions
- 27.8.2 AVR_RESET (0xC)
- 27.8.3 PROG_ENABLE (0x4)
- 27.8.4 PROG_COMMANDS (0x5)
- 27.8.5 PROG_PAGELOAD (0x6)
- 27.8.6 PROG_PAGEREAD (0x7)
- 27.8.7 Data Registers
- 27.8.8 Reset Register
- 27.8.9 Programming Enable Register
- 27.8.10 Programming Command Register
- 27.8.11 Flash Data Byte Register
- 27.8.12 Programming Algorithm
- 27.8.13 Entering Programming Mode
- 27.8.14 Leaving Programming Mode
- 27.8.15 Performing Chip Erase
- 27.8.16 Programming the Flash
- 27.8.17 Reading the Flash
- 27.8.18 Programming the EEPROM
- 27.8.19 Reading the EEPROM
- 27.8.20 Programming the Fuses
- 27.8.21 Programming the Lock Bits
- 27.8.22 Reading the Fuses and Lock Bits
- 27.8.23 Reading the Signature Bytes
- 27.8.24 Reading the Calibration Byte
- 28. Electrical Characteristics
- 29. Typical Characteristics
- 29.1 Active Supply Current
- 29.2 Idle Supply Current
- 29.3 Supply Current of I/O modules
- 29.4 Power-down Supply Current
- 29.5 Power-save Supply Current
- 29.6 Standby Supply Current
- 29.7 Pin Pull-up
- 29.8 Pin Driver Strength
- 29.9 Pin Thresholds and hysteresis
- 29.10 BOD Thresholds and Analog Comparator Offset
- 29.11 Internal Oscillator Speed
- 29.12 Current Consumption of Peripheral Units
- 29.13 Current Consumption in Reset and Reset Pulsewidth
- 30. Register Summary
- 31. Instruction Set Summary
- 32. Ordering Information
- 33. Packaging Information
- 34. Errata
- 35. Datasheet Revision History
- 35.1 Rev. 2570N – 05/11
- 35.2 Rev. 2570M – 04/11
- 35.3 Rev. 2570L – 08/07
- 35.4 Rev. 2570K – 04/07
- 35.5 Rev. 2570J – 11/06
- 35.6 Rev. 2570I – 07/06
- 35.7 Rev. 2570H – 06/06
- 35.8 Rev. 2570G – 04/06
- 35.9 Rev. 2570F – 03/06
- 35.10 Rev. 2570E – 03/06
- 35.11 Rev. 2570D – 05/05
- 35.12 Rev. 2570C – 11/04
- 35.13 Rev. 2570B – 09/04
- 35.14 Rev. 2570A – 09/04
- Table of Contents

21
2570N–AVR–05/11
ATmega325/3250/645/6450
consequence, the device does not enter Power-down entirely. It is therefore recommended to
verify that the EEPROM write operation is completed before entering Power-down.
8.3.3 Preventing EEPROM Corruption
During periods of low V
CC,
the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.
An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.
EEPROM data corruption can easily be avoided by following this design recommendation:
Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low V
CC
reset Protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.
8.4 I/O Memory
The I/O space definition of the Atmel ATmega325/3250/645/6450 is shown in “Register Sum-
mary” on page 336.
All Atmel ATmega325/3250/645/6450 I/Os and peripherals are placed in the I/O space. All I/O
locations may be accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data
between the 32 general purpose working registers and the I/O space. I/O Registers within the
address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
Refer to the instruction set section for more details. When using the I/O specific commands IN
and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data
space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel
ATmega325/3250/645/6450 is a complex microcontroller with more peripheral units than can be
supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the
Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instruc-
tions can be used.
For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.
Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most
other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore
be used on registers containing such Status Flags. The CBI and SBI instructions work with reg-
isters 0x00 to 0x1F only.
The I/O and peripherals control registers are explained in later sections.
8.4.1 General Purpose I/O Registers
The Atmel ATmega325/3250/645/6450 contains three General Purpose I/O Registers. These
registers can be used for storing any information, and they are particularly useful for storing
global variables and Status Flags. General Purpose I/O Registers within the address range 0x00
- 0x1F are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.