Datasheet
Table Of Contents
- Features
- 1. Pin Configurations
- 2. Overview
- 3. Resources
- 4. Data Retention
- 5. About Code Examples
- 6. Capacitive touch sensing
- 7. AVR CPU Core
- 8. AVR Memories
- 9. System Clock and Clock Options
- 10. Power Management and Sleep Modes
- 11. System Control and Reset
- 12. Interrupts
- 13. External Interrupts
- 13.1 Pin Change Interrupt Timing
- 13.2 Register Description
- 13.2.1 EICRA – External Interrupt Control Register A
- 13.2.2 EIMSK – External Interrupt Mask Register
- 13.2.3 EIFR – External Interrupt Flag Registe
- 13.2.4 PCMSK3 – Pin Change Mask Register 3(1)
- 13.2.5 PCMSK2 – Pin Change Mask Register 2(1)
- 13.2.6 PCMSK1 – Pin Change Mask Register 1
- 13.2.7 PCMSK0 – Pin Change Mask Register 0
- 14. I/O-Ports
- 14.1 Overview
- 14.2 Ports as General Digital I/O
- 14.3 Alternate Port Functions
- 14.4 Register Description
- 14.4.1 MCUCR – MCU Control Register
- 14.4.2 PORTA – Port A Data Register
- 14.4.3 DDRA – Port A Data Direction Register
- 14.4.4 PINA – Port A Input Pins Address
- 14.4.5 PORTB – Port B Data Register
- 14.4.6 DDRB – Port B Data Direction Register
- 14.4.7 PINB – Port B Input Pins Address
- 14.4.8 PORTC – Port C Data Register
- 14.4.9 DDRC – Port C Data Direction Register
- 14.4.10 PINC – Port C Input Pins Address
- 14.4.11 PORTD – Port D Data Register
- 14.4.12 DDRD – Port D Data Direction Register
- 14.4.13 PIND – Port D Input Pins Address
- 14.4.14 PORTE – Port E Data Register
- 14.4.15 DDRE – Port E Data Direction Register
- 14.4.16 PINE – Port E Input Pins Address
- 14.4.17 PORTF – Port F Data Register
- 14.4.18 DDRF – Port F Data Direction Register
- 14.4.19 PINF – Port F Input Pins Address
- 14.4.20 PORTG – Port G Data Register
- 14.4.21 DDRG – Port G Data Direction Register
- 14.4.22 PING – Port G Input Pins Address
- 14.4.23 PORTH – Port H Data Register(1)
- 14.4.24 DDRH – Port H Data Direction Register(1)
- 14.4.25 PINH – Port H Input Pins Address(1)
- 14.4.26 PORTJ – Port J Data Register(1)
- 14.4.27 DDRJ – Port J Data Direction Register(1)
- 14.4.28 PINJ – Port J Input Pins Address(1)
- 15. 8-bit Timer/Counter0 with PWM
- 16. Timer/Counter0 and Timer/Counter1 Prescalers
- 17. 16-bit Timer/Counter1
- 17.1 Features
- 17.2 Overview
- 17.3 Accessing 16-bit Registers
- 17.4 Timer/Counter Clock Sources
- 17.5 Counter Unit
- 17.6 Input Capture Unit
- 17.7 Output Compare Units
- 17.8 Compare Match Output Unit
- 17.9 Modes of Operation
- 17.10 Timer/Counter Timing Diagrams
- 17.11 Register Description
- 17.11.1 TCCR1A – Timer/Counter1 Control Register A
- 17.11.2 TCCR1B – Timer/Counter1 Control Register B
- 17.11.3 TCCR1C – Timer/Counter1 Control Register C
- 17.11.4 TCNT1H and TCNT1L – Timer/Counter1
- 17.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A
- 17.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B
- 17.11.7 ICR1H and ICR1L – Input Capture Register 1
- 17.11.8 TIMSK1 – Timer/Counter1 Interrupt Mask Register
- 17.11.9 TIFR1 – Timer/Counter1 Interrupt Flag Register
- 18. 8-bit Timer/Counter2 with PWM and Asynchronous Operation
- 18.1 Features
- 18.2 Overview
- 18.3 Timer/Counter Clock Sources
- 18.4 Counter Unit
- 18.5 Output Compare Unit
- 18.6 Compare Match Output Unit
- 18.7 Modes of Operation
- 18.8 Timer/Counter Timing Diagrams
- 18.9 Asynchronous Operation of Timer/Counter2
- 18.10 Timer/Counter Prescaler
- 18.11 Register Description
- 18.11.1 TCCR2A – Timer/Counter Control Register A
- 18.11.2 TCNT2 – Timer/Counter Register
- 18.11.3 OCR2A – Output Compare Register A
- 18.11.4 ASSR – Asynchronous Status Register
- 18.11.5 TIMSK2 – Timer/Counter2 Interrupt Mask Register
- 18.11.6 TIFR2 – Timer/Counter2 Interrupt Flag Register
- 18.11.7 GTCCR – General Timer/Counter Control Register
- 19. SPI – Serial Peripheral Interface
- 20. USART0
- 20.1 Features
- 20.2 Overview
- 20.3 Clock Generation
- 20.4 Frame Formats
- 20.5 USART Initialization
- 20.6 Data Transmission – The USART Transmitter
- 20.7 Data Reception – The USART Receiver
- 20.8 Asynchronous Data Reception
- 20.9 Multi-processor Communication Mode
- 20.10 Examples of Baud Rate Setting
- 20.11 Register Description
- 21. USI – Universal Serial Interface
- 22. Analog Comparator
- 23. Analog to Digital Converter
- 24. JTAG Interface and On-chip Debug System
- 25. IEEE 1149.1 (JTAG) Boundary-scan
- 26. Boot Loader Support – Read-While-Write Self-Programming
- 26.1 Features
- 26.2 Overview
- 26.3 Application and Boot Loader Flash Sections
- 26.4 Read-While-Write and No Read-While-Write Flash Sections
- 26.5 Boot Loader Lock Bits
- 26.6 Entering the Boot Loader Program
- 26.7 Addressing the Flash During Self-Programming
- 26.8 Self-Programming the Flash
- 26.8.1 Performing Page Erase by SPM
- 26.8.2 Filling the Temporary Buffer (Page Loading)
- 26.8.3 Performing a Page Write
- 26.8.4 Using the SPM Interrupt
- 26.8.5 Consideration While Updating BLS
- 26.8.6 Prevent Reading the RWW Section During Self-Programming
- 26.8.7 Setting the Boot Loader Lock Bits by SPM
- 26.8.8 EEPROM Write Prevents Writing to SPMCSR
- 26.8.9 Reading the Fuse and Lock Bits from Software
- 26.8.10 Preventing Flash Corruption
- 26.8.11 Programming Time for Flash when Using SPM
- 26.8.12 Simple Assembly Code Example for a Boot Loader
- 26.8.13 Atmel ATmega325/3250/645/6450 Boot Loader Parameters
- 26.9 Register Description
- 27. Memory Programming
- 27.1 Program And Data Memory Lock Bits
- 27.2 Fuse Bits
- 27.3 Signature Bytes
- 27.4 Calibration Byte
- 27.5 Parallel Programming Parameters, Pin Mapping, and Commands
- 27.6 Parallel Programming
- 27.6.1 Enter Programming Mode
- 27.6.2 Considerations for Efficient Programming
- 27.6.3 Chip Erase
- 27.6.4 Programming the Flash
- 27.6.5 Programming the EEPROM
- 27.6.6 Reading the Flash
- 27.6.7 Reading the EEPROM
- 27.6.8 Programming the Fuse Low Bits
- 27.6.9 Programming the Fuse High Bits
- 27.6.10 Programming the Extended Fuse Bits
- 27.6.11 Programming the Lock Bits
- 27.6.12 Reading the Fuse and Lock Bits
- 27.6.13 Reading the Signature Bytes
- 27.6.14 Reading the Calibration Byte
- 27.6.15 Parallel Programming Characteristics
- 27.7 Serial Downloading
- 27.8 Programming via the JTAG Interface
- 27.8.1 Programming Specific JTAG Instructions
- 27.8.2 AVR_RESET (0xC)
- 27.8.3 PROG_ENABLE (0x4)
- 27.8.4 PROG_COMMANDS (0x5)
- 27.8.5 PROG_PAGELOAD (0x6)
- 27.8.6 PROG_PAGEREAD (0x7)
- 27.8.7 Data Registers
- 27.8.8 Reset Register
- 27.8.9 Programming Enable Register
- 27.8.10 Programming Command Register
- 27.8.11 Flash Data Byte Register
- 27.8.12 Programming Algorithm
- 27.8.13 Entering Programming Mode
- 27.8.14 Leaving Programming Mode
- 27.8.15 Performing Chip Erase
- 27.8.16 Programming the Flash
- 27.8.17 Reading the Flash
- 27.8.18 Programming the EEPROM
- 27.8.19 Reading the EEPROM
- 27.8.20 Programming the Fuses
- 27.8.21 Programming the Lock Bits
- 27.8.22 Reading the Fuses and Lock Bits
- 27.8.23 Reading the Signature Bytes
- 27.8.24 Reading the Calibration Byte
- 28. Electrical Characteristics
- 29. Typical Characteristics
- 29.1 Active Supply Current
- 29.2 Idle Supply Current
- 29.3 Supply Current of I/O modules
- 29.4 Power-down Supply Current
- 29.5 Power-save Supply Current
- 29.6 Standby Supply Current
- 29.7 Pin Pull-up
- 29.8 Pin Driver Strength
- 29.9 Pin Thresholds and hysteresis
- 29.10 BOD Thresholds and Analog Comparator Offset
- 29.11 Internal Oscillator Speed
- 29.12 Current Consumption of Peripheral Units
- 29.13 Current Consumption in Reset and Reset Pulsewidth
- 30. Register Summary
- 31. Instruction Set Summary
- 32. Ordering Information
- 33. Packaging Information
- 34. Errata
- 35. Datasheet Revision History
- 35.1 Rev. 2570N – 05/11
- 35.2 Rev. 2570M – 04/11
- 35.3 Rev. 2570L – 08/07
- 35.4 Rev. 2570K – 04/07
- 35.5 Rev. 2570J – 11/06
- 35.6 Rev. 2570I – 07/06
- 35.7 Rev. 2570H – 06/06
- 35.8 Rev. 2570G – 04/06
- 35.9 Rev. 2570F – 03/06
- 35.10 Rev. 2570E – 03/06
- 35.11 Rev. 2570D – 05/05
- 35.12 Rev. 2570C – 11/04
- 35.13 Rev. 2570B – 09/04
- 35.14 Rev. 2570A – 09/04
- Table of Contents

149
2570N–AVR–05/11
ATmega325/3250/645/6450
The interconnection between Master and Slave CPUs with SPI is shown in Figure 19-2. The sys-
tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the
communication cycle when pulling low the Slave Select SS
pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS
, line.
When configured as a Master, the SPI interface has no automatic control of the SS
line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS
line. The last incoming byte will be
kept in the Buffer Register for later use.
When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS
pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS
pin is driven low. As one byte has been completely shifted, the end of Transmission
Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt
is requested. The Slave may continue to place new data to be sent into SPDR before reading
the incoming data. The last incoming byte will be kept in the Buffer Register for later use.
Figure 19-2. SPI Master-slave Interconnection
The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.
In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the minimum low and high period should be:
Low period: longer than 2 CPU clock cycles.
High period: longer than 2 CPU clock cycles.
SHIFT
ENABLE