Datasheet
826
SAM9G35 [DATASHEET]
11053E–ATARM–10-Mar-2014
Figure 39-23.Timeguard Operations
Table 39-10 indicates the maximum length of a timeguard period that the transmitter can handle in relation to the function
of the Baud Rate.
39.7.3.11 Receiver Time-out
The Receiver Time-out provides support in handling variable-length frames. This feature detects an idle condition on the
RXD line. When a time-out is detected, the bit TIMEOUT in the Channel Status Register (US_CSR) rises and can
generate an interrupt, thus indicating to the driver an end of frame.
The time-out delay period (during which the receiver waits for a new character) is programmed in the TO field of the
Receiver Time-out Register (US_RTOR). If the TO field is programmed to 0, the Receiver Time-out is disabled and no
time-out is detected. The TIMEOUT bit in US_CSR remains to 0. Otherwise, the receiver loads a 16-bit counter with the
value programmed in TO. This counter is decremented at each bit period and reloaded each time a new character is
received. If the counter reaches 0, the TIMEOUT bit in the Status Register rises.
D0 D1 D2 D3 D4 D5 D6 D7
TXD
Start
Bit
Parity
Bit
Stop
Bit
Baud Rate
Clock
Start
Bit
TG = 4
Write
US_THR
D0 D1 D2 D3 D4 D5 D6 D7
Parity
Bit
Stop
Bit
TXRDY
TXEMPTY
TG = 4
Table 39-10. Maximum Timeguard Length Depending on Baud Rate
Baud Rate Bit time Timeguard
Bit/sec µs ms
1 200 833 212.50
9 600 104 26.56
14400 69.4 17.71
19200 52.1 13.28
28800 34.7 8.85
33400 29.9 7.63
56000 17.9 4.55
57600 17.4 4.43
115200 8.7 2.21